Switch to: References

Citations of:

Faith & falsity

Annals of Pure and Applied Logic 131 (1-3):103-131 (2004)

Add citations

You must login to add citations.
  1. Another look at the second incompleteness theorem.Albert Visser - 2020 - Review of Symbolic Logic 13 (2):269-295.
    In this paper we study proofs of some general forms of the Second Incompleteness Theorem. These forms conform to the Feferman format, where the proof predicate is fixed and the representation of the set of axioms varies. We extend the Feferman framework in one important point: we allow the interpretation of number theory to vary.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Neo-Logicism and Its Logic.Panu Raatikainen - 2020 - History and Philosophy of Logic 41 (1):82-95.
    The rather unrestrained use of second-order logic in the neo-logicist program is critically examined. It is argued in some detail that it brings with it genuine set-theoretical existence assumptions and that the mathematical power that Hume’s Principle seems to provide, in the derivation of Frege’s Theorem, comes largely from the ‘logic’ assumed rather than from Hume’s Principle. It is shown that Hume’s Principle is in reality not stronger than the very weak Robinson Arithmetic Q. Consequently, only a few rudimentary facts (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • No Escape from Vardanyan's theorem.Albert Visser & Maartje de Jonge - 2006 - Archive for Mathematical Logic 45 (5):539-554.
    Vardanyan's theorem states that the set of PA-valid principles of Quantified Modal Logic, QML, is complete Π0 2. We generalize this result to a wide class of theories. The crucial step in the generalization is avoiding the use of Tennenbaum's Theorem.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Passive induction and a solution to a Paris–Wilkie open question.Dan E. Willard - 2007 - Annals of Pure and Applied Logic 146 (2-3):124-149.
    In 1981, Paris and Wilkie raised the open question about whether and to what extent the axiom system did satisfy the Second Incompleteness Theorem under Semantic Tableaux deduction. Our prior work showed that the semantic tableaux version of the Second Incompleteness Theorem did generalize for the most common definition of appearing in the standard textbooks.However, there was an alternate interesting definition of this axiom system in the Wilkie–Paris article in the Annals of Pure and Applied Logic 35 , pp. 261–302 (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Interpretability degrees of finitely axiomatized sequential theories.Albert Visser - 2014 - Archive for Mathematical Logic 53 (1-2):23-42.
    In this paper we show that the degrees of interpretability of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory—like Elementary Arithmetic EA, IΣ1, or the Gödel–Bernays theory of sets and classes GB—have suprema. This partially answers a question posed by Švejdar in his paper (Commentationes Mathematicae Universitatis Carolinae 19:789–813, 1978). The partial solution of Švejdar’s problem follows from a stronger fact: the convexity of the degree structure of finitely axiomatized extensions-in-the-same-language of a finitely axiomatized sequential theory in the degree (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Friedman-reflexivity.Albert Visser - 2022 - Annals of Pure and Applied Logic 173 (9):103160.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Münchhausen provability.Joost J. Joosten - 2021 - Journal of Symbolic Logic 86 (3):1006-1034.
    By Solovay’s celebrated completeness result [31] on formal provability we know that the provability logic ${\textbf {GL}}$ describes exactly all provable structural properties for any sound and strong enough arithmetical theory with a decidable axiomatisation. Japaridze generalised this result in [22] by considering a polymodal version ${\mathsf {GLP}}$ of ${\textbf {GL}}$ with modalities $[n]$ for each natural number n referring to ever increasing notions of provability. Modern treatments of ${\mathsf {GLP}}$ tend to interpret the $[n]$ provability notion as “provable in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Self-reference in arithmetic I.Volker Halbach & Albert Visser - 2014 - Review of Symbolic Logic 7 (4):671-691.
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Fix, Express, Quantify: Disquotation After Its Logic.Carlo Nicolai - 2021 - Mind 130 (519):727-757.
    Truth-theoretic deflationism holds that truth is simple, and yet that it can fulfil many useful logico-linguistic roles. Deflationism focuses on axioms for truth: there is no reduction of the notion of truth to more fundamental ones such as sets or higher-order quantifiers. In this paper I argue that the fundamental properties of reasonable, primitive truth predicates are at odds with the core tenets of classical truth-theoretic deflationism that I call fix, express, and quantify. Truth may be regarded as a broadly (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Predicate Logics of Constructive Arithmetical Theories.Albert Visser - 2006 - Journal of Symbolic Logic 71 (4):1311 - 1326.
    In this paper, we show that the predicate logics of consistent extensions of Heyting's Arithmetic plus Church's Thesis with uniqueness condition are complete $\Pi _{2}^{0}$. Similarly, we show that the predicate logic of HA*, i.e. Heyting's Arithmetic plus the Completeness Principle (for HA*) is complete $\Pi _{2}^{0}$. These results extend the known results due to Valery Plisko. To prove the results we adapt Plisko's method to use Tennenbaum's Theorem to prove 'categoricity of interpretations' under certain assumptions.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Pairs, sets and sequences in first-order theories.Albert Visser - 2008 - Archive for Mathematical Logic 47 (4):299-326.
    In this paper we study the idea of theories with containers, like sets, pairs, sequences. We provide a modest framework to study such theories. We prove two concrete results. First, we show that first-order theories of finite signature that have functional non-surjective ordered pairing are definitionally equivalent to extensions in the same language of the basic theory of non-surjective ordered pairing. Second, we show that a first-order theory of finite signature is sequential (is a theory of sequences) iff it is (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Growing Commas. A Study of Sequentiality and Concatenation.Albert Visser - 2009 - Notre Dame Journal of Formal Logic 50 (1):61-85.
    In his paper "Undecidability without arithmetization," Andrzej Grzegorczyk introduces a theory of concatenation $\mathsf{TC}$. We show that pairing is not definable in $\mathsf{TC}$. We determine a reasonable extension of $\mathsf{TC}$ that is sequential, that is, has a good sequence coding.
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The small‐is‐very‐small principle.Albert Visser - 2019 - Mathematical Logic Quarterly 65 (4):453-478.
    The central result of this paper is the small‐is‐very‐small principle for restricted sequential theories. The principle says roughly that whenever the given theory shows that a definable property has a small witness, i.e., a witness in a sufficiently small definable cut, then it shows that the property has a very small witness: i.e., a witness below a given standard number. Which cuts are sufficiently small will depend on the complexity of the formula defining the property. We draw various consequences from (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Peano Corto and Peano Basso: A Study of Local Induction in the Context of Weak Theories.Albert Visser - 2014 - Mathematical Logic Quarterly 60 (1-2):92-117.
    In this paper we study local induction w.r.t. Σ1‐formulas over the weak arithmetic. The local induction scheme, which was introduced in, says roughly this: for any virtual class that is progressive, i.e., is closed under zero and successor, and for any non‐empty virtual class that is definable by a Σ1‐formula without parameters, the intersection of and is non‐empty. In other words, we have, for all Σ1‐sentences S, that S implies, whenever is progressive. Since, in the weak context, we have (at (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • A generalization of the Second Incompleteness Theorem and some exceptions to it.Dan E. Willard - 2006 - Annals of Pure and Applied Logic 141 (3):472-496.
    This paper will introduce the notion of a naming convention and use this paradigm to both develop a new version of the Second Incompleteness Theorem and to describe when an axiom system can partially evade the Second Incompleteness Theorem.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Minimal truth and interpretability.Martin Fischer - 2009 - Review of Symbolic Logic 2 (4):799-815.
    In this paper we will investigate different axiomatic theories of truth that are minimal in some sense. One criterion for minimality will be conservativity over Peano Arithmetic. We will then give a more fine-grained characterization by investigating some interpretability relations. We will show that disquotational theories of truth, as well as compositional theories of truth with restricted induction are relatively interpretable in Peano Arithmetic. Furthermore, we will give an example of a theory of truth that is a conservative extension of (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Arithmetics of a Theory.Albert Visser - 2015 - Notre Dame Journal of Formal Logic 56 (1):81-119.
    In this paper we study the interpretations of a weak arithmetic, like Buss’s theory $\mathsf{S}^{1}_{2}$, in a given theory $U$. We call these interpretations the arithmetics of $U$. We develop the basics of the structure of the arithmetics of $U$. We study the provability logic of $U$ from the standpoint of the framework of the arithmetics of $U$. Finally, we provide a deeper study of the arithmetics of a finitely axiomatized sequential theory.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Some Observations on the FGH Theorem.Taishi Kurahashi - 2023 - Studia Logica 111 (5):749-778.
    We investigate the Friedman–Goldfarb–Harrington theorem from two perspectives. Firstly, in the frameworks of classical and modal propositional logics, we study the forms of sentences whose existence is guaranteed by the FGH theorem. Secondly, we prove some variations of the FGH theorem with respect to Rosser provability predicates.
    Download  
     
    Export citation  
     
    Bookmark  
  • Provability logics relative to a fixed extension of peano arithmetic.Taishi Kurahashi - 2018 - Journal of Symbolic Logic 83 (3):1229-1246.
    Download  
     
    Export citation  
     
    Bookmark   1 citation