Switch to: References

Add citations

You must login to add citations.
  1. Which ‘Intensional Paradoxes’ are Paradoxes?Neil Tennant - 2024 - Journal of Philosophical Logic 53 (4):933-957.
    We begin with a brief explanation of our proof-theoretic criterion of paradoxicality—its motivation, its methods, and its results so far. It is a proof-theoretic account of paradoxicality that can be given in addition to, or alongside, the more familiar semantic account of Kripke. It is a question for further research whether the two accounts agree in general on what is to count as a paradox. It is also a question for further research whether and, if so, how the so-called Ekman (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bilateral Inversion Principles.Nils Kürbis - 2022 - Electronic Proceedings in Theoretical Computer Science 358:202–215.
    This paper formulates a bilateral account of harmony that is an alternative to one proposed by Francez. It builds on an account of harmony for unilateral logic proposed by Kürbis and the observation that reading the rules for the connectives of bilateral logic bottom up gives the grounds and consequences of formulas with the opposite speech act. I formulate a process I call 'inversion' which allows the determination of assertive elimination rules from assertive introduction rules, and rejective elimination rules from (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Normalisation and subformula property for a system of intuitionistic logic with general introduction and elimination rules.Nils Kürbis - 2021 - Synthese 199 (5-6):14223-14248.
    This paper studies a formalisation of intuitionistic logic by Negri and von Plato which has general introduction and elimination rules. The philosophical importance of the system is expounded. Definitions of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system are formulated and corresponding reduction procedures for maximal formulas and permutative reduction procedures for maximal segments given. Alternatives to the main method used are also considered. It is shown that deductions in the system convert into normal form and that deductions (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Normalisation and subformula property for a system of classical logic with Tarski’s rule.Nils Kürbis - 2021 - Archive for Mathematical Logic 61 (1):105-129.
    This paper considers a formalisation of classical logic using general introduction rules and general elimination rules. It proposes a definition of ‘maximal formula’, ‘segment’ and ‘maximal segment’ suitable to the system, and gives reduction procedures for them. It is then shown that deductions in the system convert into normal form, i.e. deductions that contain neither maximal formulas nor maximal segments, and that deductions in normal form satisfy the subformula property. Tarski’s Rule is treated as a general introduction rule for implication. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Dag Prawitz on Proofs and Meaning.Heinrich Wansing (ed.) - 2014 - Cham, Switzerland: Springer.
    This volume is dedicated to Prof. Dag Prawitz and his outstanding contributions to philosophical and mathematical logic. Prawitz's eminent contributions to structural proof theory, or general proof theory, as he calls it, and inference-based meaning theories have been extremely influential in the development of modern proof theory and anti-realistic semantics. In particular, Prawitz is the main author on natural deduction in addition to Gerhard Gentzen, who defined natural deduction in his PhD thesis published in 1934. The book opens with an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Harmonic inferentialism and the logic of identity.Stephen Read - 2016 - Review of Symbolic Logic 9 (2):408-420.
    Inferentialism claims that the rules for the use of an expression express its meaning without any need to invoke meanings or denotations for them. Logical inferentialism endorses inferentialism specically for the logical constants. Harmonic inferentialism, as the term is introduced here, usually but not necessarily a subbranch of logical inferentialism, follows Gentzen in proposing that it is the introduction-rules whch give expressions their meaning and the elimination-rules should accord harmoniously with the meaning so given. It is proposed here that the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)Bilateralism in Proof-Theoretic Semantics.Nissim Francez - 2014 - Journal of Philosophical Logic 43 (2-3):239-259.
    The paper suggests a revision of the notion of harmony, a major necessary condition in proof-theoretic semantics for a natural-deduction proof-system to qualify as meaning conferring, when moving to a bilateral proof-system. The latter considers both forces of assertion and denial as primitive, and is applied here to positive logics, lacking negation altogether. It is suggested that in addition to the balance between introduction and elimination rules traditionally imposed by harmony, a balance should be imposed also on: negative introduction and (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Natural Deduction for the Sheffer Stroke and Peirce’s Arrow (and any Other Truth-Functional Connective).Richard Zach - 2015 - Journal of Philosophical Logic 45 (2):183-197.
    Methods available for the axiomatization of arbitrary finite-valued logics can be applied to obtain sound and complete intelim rules for all truth-functional connectives of classical logic including the Sheffer stroke and Peirce’s arrow. The restriction to a single conclusion in standard systems of natural deduction requires the introduction of additional rules to make the resulting systems complete; these rules are nevertheless still simple and correspond straightforwardly to the classical absurdity rule. Omitting these rules results in systems for intuitionistic versions of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Normal derivability in classical natural deduction.Jan Von Plato & Annika Siders - 2012 - Review of Symbolic Logic 5 (2):205-211.
    A normalization procedure is given for classical natural deduction with the standard rule of indirect proof applied to arbitrary formulas. For normal derivability and the subformula property, it is sufficient to permute down instances of indirect proof whenever they have been used for concluding a major premiss of an elimination rule. The result applies even to natural deduction for classical modal logic.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Gentzen's proof systems: byproducts in a work of genius.Jan von Plato - 2012 - Bulletin of Symbolic Logic 18 (3):313-367.
    Gentzen's systems of natural deduction and sequent calculus were byproducts in his program of proving the consistency of arithmetic and analysis. It is suggested that the central component in his results on logical calculi was the use of a tree form for derivations. It allows the composition of derivations and the permutation of the order of application of rules, with a full control over the structure of derivations as a result. Recently found documents shed new light on the discovery of (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Proof Theory for Modal Logic.Sara Negri - 2011 - Philosophy Compass 6 (8):523-538.
    The axiomatic presentation of modal systems and the standard formulations of natural deduction and sequent calculus for modal logic are reviewed, together with the difficulties that emerge with these approaches. Generalizations of standard proof systems are then presented. These include, among others, display calculi, hypersequents, and labelled systems, with the latter surveyed from a closer perspective.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • In the shadows of the löwenheim-Skolem theorem: Early combinatorial analyses of mathematical proofs.Jan von Plato - 2007 - Bulletin of Symbolic Logic 13 (2):189-225.
    The Löwenheim-Skolem theorem was published in Skolem's long paper of 1920, with the first section dedicated to the theorem. The second section of the paper contains a proof-theoretical analysis of derivations in lattice theory. The main result, otherwise believed to have been established in the late 1980s, was a polynomial-time decision algorithm for these derivations. Skolem did not develop any notation for the representation of derivations, which makes the proofs of his results hard to follow. Such a formal notation is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Peter Schroeder-Heister on Proof-Theoretic Semantics.Thomas Piecha & Kai F. Wehmeier (eds.) - 2024 - Springer.
    This open access book is a superb collection of some fifteen chapters inspired by Schroeder-Heister's groundbreaking work, written by leading experts in the field, plus an extensive autobiography and comments on the various contributions by Schroeder-Heister himself. For several decades, Peter Schroeder-Heister has been a central figure in proof-theoretic semantics, a field of study situated at the interface of logic, theoretical computer science, natural-language semantics, and the philosophy of language. -/- The chapters of which this book is composed discuss the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Proof theory for heterogeneous logic combining formulas and diagrams: proof normalization.Ryo Takemura - 2021 - Archive for Mathematical Logic 60 (7):783-813.
    We extend natural deduction for first-order logic (FOL) by introducing diagrams as components of formal proofs. From the viewpoint of FOL, we regard a diagram as a deductively closed conjunction of certain FOL formulas. On the basis of this observation, we first investigate basic heterogeneous logic (HL) wherein heterogeneous inference rules are defined in the styles of conjunction introduction and elimination rules of FOL. By examining what is a detour in our heterogeneous proofs, we discuss that an elimination-introduction pair of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Theories of truth and the maxim of minimal mutilation.Ole Thomassen Hjortland - 2017 - Synthese 199 (Suppl 3):787-818.
    Nonclassical theories of truth have in common that they reject principles of classical logic to accommodate an unrestricted truth predicate. However, different nonclassical strategies give up different classical principles. The paper discusses one criterion we might use in theory choice when considering nonclassical rivals: the maxim of minimal mutilation.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • General-Elimination Stability.Bruno Jacinto & Stephen Read - 2017 - Studia Logica 105 (2):361-405.
    General-elimination harmony articulates Gentzen’s idea that the elimination-rules are justified if they infer from an assertion no more than can already be inferred from the grounds for making it. Dummett described the rules as not only harmonious but stable if the E-rules allow one to infer no more and no less than the I-rules justify. Pfenning and Davies call the rules locally complete if the E-rules are strong enough to allow one to infer the original judgement. A method is given (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Harmony in Multiple-Conclusion Natural-Deduction.Nissim Francez - 2014 - Logica Universalis 8 (2):215-259.
    The paper studies the extension of harmony and stability, major themes in proof-theoretic semantics, from single-conclusion natural-deduction systems to multiple -conclusions natural-deduction, independently of classical logic. An extension of the method of obtaining harmoniously-induced general elimination rules from given introduction rules is suggested, taking into account sub-structurality. Finally, the reductions and expansions of the multiple -conclusions natural-deduction representation of classical logic are formulated.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Normal derivability in modal logic.Jan von Plato - 2005 - Mathematical Logic Quarterly 51 (6):632-638.
    The standard rule of necessitation in systems of natural deduction for the modal logic S4 concludes □A from A whenever all assumptions A depends on are modal formulas. This condition prevents the composability and normalization of derivations, and therefore modifications of the rule have been suggested. It is shown that both properties hold if, instead of changing the rule of necessitation, all elimination rules are formulated in the manner of disjunction elimination, i.e. with an arbitrary consequence.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A Note on Harmony.Nissim Francez & Roy Dyckhoff - 2012 - Journal of Philosophical Logic 41 (3):613-628.
    In the proof-theoretic semantics approach to meaning, harmony , requiring a balance between introduction-rules (I-rules) and elimination rules (E-rules) within a meaning conferring natural-deduction proof-system, is a central notion. In this paper, we consider two notions of harmony that were proposed in the literature: 1. GE-harmony , requiring a certain form of the E-rules, given the form of the I-rules. 2. Local intrinsic harmony : imposes the existence of certain transformations of derivations, known as reduction and expansion . We propose (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Eight Rules for Implication Elimination.Michael Arndt - 2024 - In Thomas Piecha & Kai F. Wehmeier (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics. Springer. pp. 239-273.
    Eight distinct rules for implication in the antecedent for the sequent calculus, one of which being Gentzen’s standard rule, can be derived by successively applying a number of cuts to the logical ground sequent A → B, A ⇒ B. A naive translation into natural deduction collapses four of those rules onto the standard implication elimination rule, and the remaining four rules onto the general elimination rule. This collapse is due to the fact that the difference between a formula occurring (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • How to Ekman a Crabbé-Tennant.Peter Schroeder-Heister & Luca Tranchini - 2018 - Synthese 199 (Suppl 3):617-639.
    Developing early results of Prawitz, Tennant proposed a criterion for an expression to count as a paradox in the framework of Gentzen’s natural deduction: paradoxical expressions give rise to non-normalizing derivations. Two distinct kinds of cases, going back to Crabbé and Tennant, show that the criterion overgenerates, that is, there are derivations which are intuitively non-paradoxical but which fail to normalize. Tennant’s proposed solution consists in reformulating natural deduction elimination rules in general form. Developing intuitions of Ekman we show that (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Translations from natural deduction to sequent calculus.Jan von Plato - 2003 - Mathematical Logic Quarterly 49 (5):435.
    Gentzen's “Untersuchungen” [1] gave a translation from natural deduction to sequent calculus with the property that normal derivations may translate into derivations with cuts. Prawitz in [8] gave a translation that instead produced cut-free derivations. It is shown that by writing all elimination rules in the manner of disjunction elimination, with an arbitrary consequence, an isomorphic translation between normal derivations and cut-free derivations is achieved. The standard elimination rules do not permit a full normal form, which explains the cuts in (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Normal derivations and sequent derivations.Mirjana Borisavljevi - 2008 - Journal of Philosophical Logic 37 (6):521 - 548.
    The well-known picture that sequent derivations without cuts and normal derivations “are the same” will be changed. Sequent derivations without maximum cuts (i.e. special cuts which correspond to maximum segments from natural deduction) will be considered. It will be shown that the natural deduction image of a sequent derivation without maximum cuts is a normal derivation, and the sequent image of a normal derivation is a derivation without maximum cuts. The main consequence of that property will be that sequent derivations (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Proof-theoretic semantics for a natural language fragment.Nissim Francez & Roy Dyckhoff - 2010 - Linguistics and Philosophy 33 (6):447-477.
    The paper presents a proof-theoretic semantics (PTS) for a fragment of natural language, providing an alternative to the traditional model-theoretic (Montagovian) semantics (MTS), whereby meanings are truth-condition (in arbitrary models). Instead, meanings are taken as derivability-conditions in a dedicated natural-deduction (ND) proof-system. This semantics is effective (algorithmically decidable), adhering to the meaning as use paradigm, not suffering from several of the criticisms formulated by philosophers of language against MTS as a theory of meaning. In particular, Dummett’s manifestation argument does not (...)
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Inversion by definitional reflection and the admissibility of logical rules.Wagner Campos Sanz & Thomas Piecha - 2009 - Review of Symbolic Logic 2 (3):550-569.
    The inversion principle for logical rules expresses a relationship between introduction and elimination rules for logical constants. Hallnäs & Schroeder-Heister proposed the principle of definitional reflection, which embodies basic ideas of inversion in the more general context of clausal definitions. For the context of admissibility statements, this has been further elaborated by Schroeder-Heister . Using the framework of definitional reflection and its admissibility interpretation, we show that, in the sequent calculus of minimal propositional logic, the left introduction rules are admissible (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • General-Elimination Harmony and the Meaning of the Logical Constants.Stephen Read - 2010 - Journal of Philosophical Logic 39 (5):557-576.
    Inferentialism claims that expressions are meaningful by virtue of rules governing their use. In particular, logical expressions are autonomous if given meaning by their introduction-rules, rules specifying the grounds for assertion of propositions containing them. If the elimination-rules do no more, and no less, than is justified by the introduction-rules, the rules satisfy what Prawitz, following Lorenzen, called an inversion principle. This connection between rules leads to a general form of elimination-rule, and when the rules have this form, they may (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Rereading Gentzen.Jan Von Plato - 2003 - Synthese 137 (1-2):195 - 209.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On a Generality Condition in Proof‐Theoretic Semantics.Bogdan Dicher - 2017 - Theoria 83 (4):394-418.
    In the recent literature on proof-theoretic semantics, there is mention of a generality condition on defining rules. According to this condition, the schematic formulation of the defining rules must be maximally general, in the sense that no restrictions should be placed on the contexts of these rules. In particular, context variables must always be present in the schematic rules and they should range over arbitrary collections of formulae. I argue against imposing such a condition, by showing that it has undesirable (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Inversion by definitional reflection and the admissibility of logical rules: Inversion by definitional reflection.Wagner De Campos Sanz - 2009 - Review of Symbolic Logic 2 (3):550-569.
    The inversion principle for logical rules expresses a relationship between introduction and elimination rules for logical constants. Hallnäs & Schroeder-Heister proposed the principle of definitional reflection, which embodies basic ideas of inversion in the more general context of clausal definitions. For the context of admissibility statements, this has been further elaborated by Schroeder-Heister. Using the framework of definitional reflection and its admissibility interpretation, we show that, in the sequent calculus of minimal propositional logic, the left introduction rules are admissible when (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Normal Proofs, Cut Free Derivations and Structural Rules.Greg Restall - 2014 - Studia Logica 102 (6):1143-1166.
    Different natural deduction proof systems for intuitionistic and classical logic —and related logical systems—differ in fundamental properties while sharing significant family resemblances. These differences become quite stark when it comes to the structural rules of contraction and weakening. In this paper, I show how Gentzen and Jaśkowski’s natural deduction systems differ in fine structure. I also motivate directed proof nets as another natural deduction system which shares some of the design features of Genzen and Jaśkowski’s systems, but which differs again (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Sequent calculus in natural deduction style.Sara Negri & Jan von Plato - 2001 - Journal of Symbolic Logic 66 (4):1803-1816.
    A sequent calculus is given in which the management of weakening and contraction is organized as in natural deduction. The latter has no explicit weakening or contraction, but vacuous and multiple discharges in rules that discharge assumptions. A comparison to natural deduction is given through translation of derivations between the two systems. It is proved that if a cut formula is never principal in a derivation leading to the right premiss of cut, it is a subformula of the conclusion. Therefore (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • From Gentzen to Jaskowski and Back: Algorithmic Translation of Derivations Between the Two Main Systems of Natural Deduction.Jan Von Plato - 2017 - Bulletin of the Section of Logic 46 (1/2).
    The way from linearly written derivations in natural deduction, introduced by Jaskowski and often used in textbooks, is a straightforward root-first translation. The other direction, instead, is tricky, because of the partially ordered assumption formulas in a tree that can get closed by the end of a derivation. An algorithm is defined that operates alternatively from the leaves and root of a derivation and solves the problem.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Necessity of Thought.Cesare Cozzo - 2014 - In Heinrich Wansing (ed.), Dag Prawitz on Proofs and Meaning. Cham, Switzerland: Springer. pp. 101-20.
    The concept of “necessity of thought” plays a central role in Dag Prawitz’s essay “Logical Consequence from a Constructivist Point of View” (Prawitz 2005). The theme is later developed in various articles devoted to the notion of valid inference (Prawitz, 2009, forthcoming a, forthcoming b). In section 1 I explain how the notion of necessity of thought emerges from Prawitz’s analysis of logical consequence. I try to expound Prawitz’s views concerning the necessity of thought in sections 2, 3 and 4. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On flattening elimination rules.Grigory K. Olkhovikov & Peter Schroeder-Heister - 2014 - Review of Symbolic Logic 7 (1):60-72.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • A sequent calculus isomorphic to gentzen’s natural deduction.Jan von Plato - 2011 - Review of Symbolic Logic 4 (1):43-53.
    Gentzens natural deduction. Thereby the appearance of the cuts in translation is explained.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Varieties of linear calculi.Sara Negri - 2002 - Journal of Philosophical Logic 31 (6):569-590.
    A uniform calculus for linear logic is presented. The calculus has the form of a natural deduction system in sequent calculus style with general introduction and elimination rules. General elimination rules are motivated through an inversion principle, the dual form of which gives the general introduction rules. By restricting all the rules to their single-succedent versions, a uniform calculus for intuitionistic linear logic is obtained. The calculus encompasses both natural deduction and sequent calculus that are obtained as special instances from (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • On the unity of duality.Noam Zeilberger - 2008 - Annals of Pure and Applied Logic 153 (1-3):66-96.
    Most type systems are agnostic regarding the evaluation strategy for the underlying languages, with the value restriction for ML which is absent in Haskell as a notable exception. As type systems become more precise, however, detailed properties of the operational semantics may become visible because properties captured by the types may be sound under one strategy but not the other. For example, intersection types distinguish between call-by-name and call-by-value functions, because the subtyping law ∩≤A→ is unsound for the latter in (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On the Notion of Canonical Derivations From Open Assumptions and its Role in Proof-Theoretic Semantics.Nissim Francez - 2015 - Review of Symbolic Logic 8 (2):296-305.
    The paper proposes an extension of the definition of a canonical proof, central to proof-theoretic semantics, to a definition of a canonical derivation from open assumptions. The impact of the extension on the definition of (reified) proof-theoretic meaning of logical constants is discussed. The extended definition also sheds light on a puzzle regarding the definition of local-completeness of a natural-deduction proof-system, underlying its harmony.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • An Alternative Natural Deduction for the Intuitionistic Propositional Logic.Mirjana Ilić - 2016 - Bulletin of the Section of Logic 45 (1).
    A natural deduction system NI, for the full propositional intuitionistic logic, is proposed. The operational rules of NI are obtained by the translation from Gentzen’s calculus LJ and the normalization is proved, via translations from sequent calculus derivations to natural deduction derivations and back.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Bilateralism in Proof-Theoretic Semantics.Nissim Francez - 2013 - Journal of Philosophical Logic (2-3):1-21.
    The paper suggests a revision of the notion of harmony, a major necessary condition in proof-theoretic semantics for a natural-deduction proof-system to qualify as meaning conferring, when moving to a bilateral proof-system. The latter considers both forces of assertion and denial as primitive, and is applied here to positive logics, lacking negation altogether. It is suggested that in addition to the balance between (positive) introduction and elimination rules traditionally imposed by harmony, a balance should be imposed also on: (i) negative (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Towards a canonical classical natural deduction system.José Santo - 2013 - Annals of Pure and Applied Logic 164 (6):618-650.
    This paper studies a new classical natural deduction system, presented as a typed calculus named View the MathML sourceλ̲μlet. It is designed to be isomorphic to Curien and Herbelinʼs View the MathML sourceλ¯μμ˜-calculus, both at the level of proofs and reduction, and the isomorphism is based on the correct correspondence between cut in sequent calculus, and substitution in natural deduction. It is a combination of Parigotʼs λμ-calculus with the idea of “coercion calculus” due to Cervesato and Pfenning, accommodating let-expressions in (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Bilateral Relevant Logic.Nissim Francez - 2014 - Review of Symbolic Logic 7 (2):250-272.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Strong normalization of classical natural deduction with disjunctions.Koji Nakazawa & Makoto Tatsuta - 2008 - Annals of Pure and Applied Logic 153 (1-3):21-37.
    This paper proves the strong normalization of classical natural deduction with disjunction and permutative conversions, by using CPS-translation and augmentations. Using them, this paper also proves the strong normalization of classical natural deduction with general elimination rules for implication and conjunction, and their permutative conversions. This paper also proves that natural deduction can be embedded into natural deduction with general elimination rules, strictly preserving proof normalization.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On harmony and permuting conversions.Nissim Francez - 2017 - Journal of Applied Logic 21:14-23.
    The paper exposes the relevance of permuting conversions (in natural-deduction systems) to the role of such systems in the theory of meaning known as proof-theoretic semantics, by relating permuting conversion to harmony, hitherto related to normalisation only. This is achieved by showing the connection of permuting conversion to the general notion of canonicity, once applied to arbitrary derivations from open assumption. In the course of exposing the relationship of permuting conversions to harmony, a general definition of the former is proposed, (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Calculus of Higher-Level Rules, Propositional Quantification, and the Foundational Approach to Proof-Theoretic Harmony.Peter Schroeder-Heister - 2014 - Studia Logica 102 (6):1185-1216.
    We present our calculus of higher-level rules, extended with propositional quantification within rules. This makes it possible to present general schemas for introduction and elimination rules for arbitrary propositional operators and to define what it means that introductions and eliminations are in harmony with each other. This definition does not presuppose any logical system, but is formulated in terms of rules themselves. We therefore speak of a foundational account of proof-theoretic harmony. With every set of introduction rules a canonical elimination (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • A Survey of Nonstandard Sequent Calculi.Andrzej Indrzejczak - 2014 - Studia Logica 102 (6):1295-1322.
    The paper is a brief survey of some sequent calculi which do not follow strictly the shape of sequent calculus introduced by Gentzen. We propose the following rough classification of all SC: Systems which are based on some deviations from the ordinary notion of a sequent are called generalised; remaining ones are called ordinary. Among the latter we distinguish three types according to the proportion between the number of primitive sequents and rules. In particular, in one of these types, called (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Advances in Natural Deduction: A Celebration of Dag Prawitz's Work.Luiz Carlos Pereira & Edward Hermann Haeusler (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This collection of papers, celebrating the contributions of Swedish logician Dag Prawitz to Proof Theory, has been assembled from those presented at the Natural Deduction conference organized in Rio de Janeiro to honour his seminal research. Dag Prawitz’s work forms the basis of intuitionistic type theory and his inversion principle constitutes the foundation of most modern accounts of proof-theoretic semantics in Logic, Linguistics and Theoretical Computer Science. The range of contributions includes material on the extension of natural deduction with higher-order (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Logic Inspired by Natural Language: Quantifiers As Subnectors.Nissim Francez - 2014 - Journal of Philosophical Logic 43 (6):1153-1172.
    Inspired by the grammar of natural language, the paper presents a variant of first-order logic, in which quantifiers are not sentential operators, but are used as subnectors . A quantified term formed by a subnector is an argument of a predicate. The logic is defined by means of a meaning-conferring natural-deduction proof-system, according to the proof-theoretic semantics program. The harmony of the I/E-rules is shown. The paper then presents a translation, called the Frege translation, from the defined logic to standard (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Towards a canonical classical natural deduction system.José Espírito Santo - 2013 - Annals of Pure and Applied Logic 164 (6):618-650.
    Download  
     
    Export citation  
     
    Bookmark  
  • An Analysis of the Rules of Gentzen’s _Nj and Lj_.Mirjana Borisavljević - 2018 - Review of Symbolic Logic 11 (2):347-370.
    The connection between the rules and derivations of Gentzen’s calculiNJandLJwill be explained by several steps (i.e., systems), and an analysis of the well-known problems of the connection between reduction steps of normalization and cut elimination, from Zucker (1974) and Urban (2014), will be given.
    Download  
     
    Export citation  
     
    Bookmark   3 citations