Switch to: References

Add citations

You must login to add citations.
  1. Agential Teleosemantics.Tiago Rama - 2022 - Dissertation, Autonomous University of Barcelona
    The field of the philosophy of biology is flourishing in its aim to evaluate and rethink the view inherited from the previous century ---the Modern Synthesis. Different research areas and theories have come to the fore in the last decades in order to account for different biological phenomena that, in the first instance, fall beyond the explanatory scope of the Modern Synthesis. This thesis is anchored and motivated by this revolt in the philosophy of biology. -/- The central target in (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Evolution is About Populations, But Its Causes are About Individuals.Pierrick Bourrat - 2019 - Biological Theory 14 (4):254-266.
    There is a tension between, on the one hand, the view that natural selection refers to individual-level causes, and on the other hand, the view that it refers to a population-level cause. In this article, I make the case for the individual-level cause view. I respond to recent claims made by McLoone that the individual-level cause view is inconsistent. I show that if one were to follow his arguments, any causal claim in any context would have to be regarded as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Téléologie et fonctions en biologie. Une approche non causale des explications téléofonctionnelles.Alberto Molina Pérez - 2017 - Dissertation, Universidad Autónoma de Madrid
    This dissertation focuses on teleology and functions in biology. More precisely, it focuses on the scientific legitimacy of teleofunctional attributions and explanations in biology. It belongs to a multi-faceted debate that can be traced back to at least the 1970s. One aspect of the debate concerns the naturalization of functions. Most authors try to reduce, translate or explain functions and teleology in terms of efficient causes so that they find their place in the framework of the natural sciences. Our approach (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Why a convincing argument for causalism cannot entirely eschew population-level properties: discussion of Otsuka.Brian McLoone - 2018 - Biology and Philosophy 33 (1-2):11.
    Causalism is the thesis that natural selection can cause evolution. A standard argument for causalism involves showing that a hypothetical intervention on some population-level property that is identified with natural selection will result in evolution. In a pair of articles, one of which recently appeared in the pages of this journal, Jun Otsuka has put forward a quite different argument for causalism. Otsuka attempts to show that natural selection can cause evolution by considering a hypothetical intervention on an individual-level property. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Discussion note : Did Darwin really answer Paley's question?Björn Brunnander - unknown
    It is commonly thought that natural selection explains the rise of adaptive complexity. Razeto-Barry and Frick have recently argued in favour of this view, dubbing it the Creative View. I argue that the Creative View is mistaken if it claims that natural selection serves to answer Paley’s question. This is shown by a case that brings out the contrastive structure inherent in this demand for explanation. There is, however, a rather trivial sense in which specific environmental conditions are crucial for (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Four Pillars of Statisticalism.Denis M. Walsh, André Ariew & Mohan Matthen - 2017 - Philosophy, Theory, and Practice in Biology 9 (1):1-18.
    Over the past fifteen years there has been a considerable amount of debate concerning what theoretical population dynamic models tell us about the nature of natural selection and drift. On the causal interpretation, these models describe the causes of population change. On the statistical interpretation, the models of population dynamics models specify statistical parameters that explain, predict, and quantify changes in population structure, without identifying the causes of those changes. Selection and drift are part of a statistical description of population (...)
    Download  
     
    Export citation  
     
    Bookmark   31 citations  
  • What did Popper learn from Lakatos?Bence Nanay - 2017 - British Journal for the History of Philosophy 25 (6):1202-1215.
    The canonical version of the history of twentieth century philosophy of science tells us that Lakatos was Popper’s disciple, but it is rarely mentioned that Popper would have learned anything from Lakatos. The aim of this paper is to examine Lakatos’ influence on Popper’s philosophical system and to argue that Lakatos did have an important, yet somewhat unexpected, impact on Popper’s thinking: he influenced Popper’s evolutionary model for ‘progress’ in science. And Lakatos’ influence sheds new light on why and how (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Selection in a Complex World: Deriving Causality from Stable Equilibrium.Hugh Desmond - 2018 - Erkenntnis 83 (2):265-286.
    It is an ongoing controversy whether natural selection is a cause of population change, or a mere statistical description of how individual births and deaths accumulate. In this paper I restate the problem in terms of the reference class problem, and propose how the structure of stable equilibrium can provide a solution in continuity with biological practice. Insofar natural selection can be understood as a tendency towards equilibrium, key statisticalist criticisms are avoided. Further, in a modification of the Newtonian-force analogy, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Probabilistic causation and the explanatory role of natural selection.Pablo Razeto-Barry & Ramiro Frick - 2011 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42 (3):344-355.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Explanation and the Evolutionary First Law.Devin Y. Gouvêa - 2015 - Philosophy of Science 82 (3):363-382.
    Analogies between Newtonian mechanics and evolutionary processes are powerful but not infinitely versatile tools for generating explanations of particular biological phenomena. Their explanatory range is sensitive to a preliminary decision about which processes count as background conditions and which as special forces. Here I argue that the defenders of the zero-force evolutionary law are mistaken in defending their decision as the only appropriate one. The Hardy–Weinberg principle remains a viable option that is consistent with the epistemic role of Newton’s own (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Natural Selection and Multiple Realisation: A Closer Look.Björn Brunnander - 2013 - International Studies in the Philosophy of Science 27 (1):73 - 83.
    The target of this article is the claim that natural selection accounts for the multiple realisation of biological and psychological kinds. I argue that the explanation actually offered does not provide any insight about the phenomenon since it presupposes multiple realisation as an unexplained premise, and this is what does all the work. The purported explanation mistakenly invokes the ?indifference? of selection to structure as an additional explanatorily relevant factor. While such indifference can be explanatory in intentional contexts, it is (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Probabilistic causation and the explanatory role of natural selection.Pablo Razeto-Barry & Ramiro Frick - 2011 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 42 (3):344-355.
    The explanatory role of natural selection is one of the long-term debates in evolutionary biology. Nevertheless, the consensus has been slippery because conceptual confusions and the absence of a unified, formal causal model that integrates different explanatory scopes of natural selection. In this study we attempt to examine two questions: (i) What can the theory of natural selection explain? and (ii) Is there a causal or explanatory model that integrates all natural selection explananda? For the first question, we argue that (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Natural Selection: A Case for the Counterfactual Approach. [REVIEW]Philippe Huneman - 2012 - Erkenntnis 76 (2):171-194.
    This paper investigates the conception of causation required in order to make sense of natural selection as a causal explanation of changes in traits or allele frequencies. It claims that under a counterfactual account of causation, natural selection is constituted by the causal relevance of traits and alleles to the variation in traits and alleles frequencies. The “statisticalist” view of selection (Walsh, Matthen, Ariew, Lewens) has shown that natural selection is not a cause superadded to the causal interactions between individual (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Drift: A historical and conceptual overview.Anya Plutynski - 2007 - Biological Theory 2 (2):156-167.
    There are several different ways in which chance affects evolutionary change. That all of these processes are called “random genetic drift” is in part a due to common elements across these different processes, but is also a product of historical borrowing of models and language across different levels of organization in the biological hierarchy. A history of the concept of drift will reveal the variety of contexts in which drift has played an explanatory role in biology, and will shed light (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Productivity, relevance and natural selection.Stuart Glennan - 2009 - Biology and Philosophy 24 (3):325-339.
    Recent papers by a number of philosophers have been concerned with the question of whether natural selection is a causal process, and if it is, whether the causes of selection are properties of individuals or properties of populations. I shall argue that much confusion in this debate arises because of a failure to distinguish between causal productivity and causal relevance. Causal productivity is a relation that holds between events connected via continuous causal processes, while causal relevance is a relationship that (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • How Do Natural Selection and Random Drift Interact?Marshall Abrams - 2007 - Philosophy of Science 74 (5):666-679.
    One controversy about the existence of so called evolutionary forces such as natural selection and random genetic drift concerns the sense in which such “forces” can be said to interact. In this paper I explain how natural selection and random drift can interact. In particular, I show how population-level probabilities can be derived from individual-level probabilities, and explain the sense in which natural selection and drift are embodied in these population-level probabilities. I argue that whatever causal character the individual-level probabilities (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • The return of the replicator: What is philosophically significant in a general account of replication and selection? [REVIEW]Bence Nanay - 2002 - Biology and Philosophy 17 (1):109-121.
    The aim of this paper is to outline a typologyof selection processes, and show that differentsub-categories have different explanatorypower. The basis of this typology of selectionprocesses is argued to be the difference ofreplication processes involved in them. Inorder to show this, I argue that: 1.Replication is necessary for selection and 2.Different types of replication lead todifferent types of selection. Finally, it isargued that this typology is philosophicallysignificant, since it contrasts cases ofselection (on the basis of the replicationprocesses involved in them) (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Is sex really necessary? And other questions for Lewens.Mohan Matthen - 2003 - British Journal for the Philosophy of Science 54 (2):297-308.
    It has been claimed that certain forms of individual essentialism render the Theory of Natural Selection unable to explain why any given individual has the traits it does. Here, three reasons are offered why the Theory ought to ignore these forms of essentialism. First, the trait-distributions explained by population genetics supervene on individual-level causal links, and thus selection must have individual-level effects. Second, even if there are individuals that possess thick essences, they lie outside the domain of the Theory. Finally, (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Selection, drift, and the “forces” of evolution.Christopher Stephens - 2004 - Philosophy of Science 71 (4):550-570.
    Recently, several philosophers have challenged the view that evolutionary theory is usefully understood by way of an analogy with Newtonian mechanics. Instead, they argue that evolutionary theory is merely a statistical theory. According to this alternate approach, natural selection and random genetic drift are not even causes, much less forces. I argue that, properly understood, the Newtonian analogy is unproblematic and illuminating. I defend the view that selection and drift are causes in part by attending to a pair of important (...)
    Download  
     
    Export citation  
     
    Bookmark   96 citations  
  • Symmetry between the intentionality of minds and machines? The biological plausibility of Dennett’s account.Bence Nanay - 2006 - Minds and Machines 16 (1):57-71.
    One of the most influential arguments against the claim that computers can think is that while our intentionality is intrinsic, that of computers is derived: it is parasitic on the intentionality of the programmer who designed the computer-program. Daniel Dennett chose a surprising strategy for arguing against this asymmetry: instead of denying that the intentionality of computers is derived, he endeavours to argue that human intentionality is derived too. I intend to examine that biological plausibility of Dennett’s suggestion and show (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Natural Selection and the Nature of Statistical Explanations.Roger Deulofeu Batllori - forthcoming - Critica:27-52.
    There is a widespread philosophical interpretation of natural selection in evolutionary theory: natural selection, like mutation, migration, and drift are seen as forces that propel the evolution of populations. Natural selection is thus a population level causal process. This account has been challenged by the Statistics, claiming that natural selection is not a population level cause but rather a statistical feature of a population. This paper examines the nature of the aforementioned ontological debate and the nature of statistical explanations given (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Population and organismal perspectives on trait origins.Brian McLoone - 2020 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 83:101288.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Selection never dominates drift.Hayley Clatterbuck, Elliott Sober & Richard Lewontin - 2013 - Biology and Philosophy 28 (4):577-592.
    The probability that the fitter of two alleles will increase in frequency in a population goes up as the product of N (the effective population size) and s (the selection coefficient) increases. Discovering the distribution of values for this product across different alleles in different populations is a very important biological task. However, biologists often use the product Ns to define a different concept; they say that drift “dominates” selection or that drift is “stronger than” selection when Ns is much (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Descriptions and models: Some responses to Abrams.Denis M. Walsh - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3):302-308.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Autonomous-Statistical Explanations and Natural Selection.André Ariew, Collin Rice & Yasha Rohwer - 2015 - British Journal for the Philosophy of Science 66 (3):635-658.
    Shapiro and Sober claim that Walsh, Ariew, Lewens, and Matthen give a mistaken, a priori defense of natural selection and drift as epiphenomenal. Contrary to Shapiro and Sober’s claims, we first argue that WALM’s explanatory doctrine does not require a defense of epiphenomenalism. We then defend WALM’s explanatory doctrine by arguing that the explanations provided by the modern genetical theory of natural selection are ‘autonomous-statistical explanations’ analogous to Galton’s explanation of reversion to mediocrity and an explanation of the diffusion ofgases. (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Drift beyond Wright–Fisher.Hayley Clatterbuck - 2015 - Synthese 192 (11):3487-3507.
    Several recent arguments by philosophers of biology have challenged the traditional view that evolutionary factors, such as drift and selection, are genuine causes of evolutionary outcomes. In the case of drift, advocates of the statistical theory argue that drift is merely the sampling error inherent in the other stochastic processes of evolution and thus denotes a mathematical, rather than causal, feature of populations. This debate has largely centered around one particular model of drift, the Wright–Fisher model, and this has contributed (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Trait fitness is not a propensity, but fitness variation is.Elliott Sober - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3):336-341.
    The propensity interpretation of fitness draws on the propensity interpretation of probability, but advocates of the former have not attended sufficiently to problems with the latter. The causal power of C to bring about E is not well-represented by the conditional probability Pr. Since the viability fitness of trait T is the conditional probability Pr, the viability fitness of the trait does not represent the degree to which having the trait causally promotes surviving. The same point holds for fertility fitness. (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Gould and Lewontin against the adaptacionist program.Santiago Ginnobili & Daniel Blanco - 2007 - Scientiae Studia 5 (1):35-48.
    Download  
     
    Export citation  
     
    Bookmark  
  • Session 4: Evolutionary indeterminism.Robert Brandon, Alan Love, Paul Griffths & Frederic Bouchard - manuscript
    Proceedings of the Pittsburgh Workshop in History and Philosophy of Biology, Center for Philosophy of Science, University of Pittsburgh, March 23-24 2001 Session 4: Evolutionary Indeterminism.
    Download  
     
    Export citation  
     
    Bookmark  
  • Of mice and metaphysics: Natural selection and realized population‐level properties.Matthew C. Haug - 2007 - Philosophy of Science 74 (4):431-451.
    In this paper, I answer a fundamental question facing any view according to which natural selection is a population‐level causal process—namely, how is the causal process of natural selection related to, yet not preempted by, causal processes that occur at the level of individual organisms? Without an answer to this grounding question, the population‐level causal view appears unstable—collapsing into either an individual‐level causal interpretation or the claim that selection is a purely formal, statistical phenomenon. I argue that a causal account (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Natural Selection and Drift as Individual-Level Causes of Evolution.Pierrick Bourrat - 2018 - Acta Biotheoretica 66 (3):159-176.
    In this paper I critically evaluate Reisman and Forber’s :1113–1123, 2005) arguments that drift and natural selection are population-level causes of evolution based on what they call the manipulation condition. Although I agree that this condition is an important step for identifying causes for evolutionary change, it is insufficient. Following Woodward, I argue that the invariance of a relationship is another crucial parameter to take into consideration for causal explanations. Starting from Reisman and Forber’s example on drift and after having (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Did Darwin really answer Paley’s question?Björn Brunnander - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (3):309-311.
    It is commonly thought that natural selection explains the rise of adaptive complexity. Razeto-Barry and Frick have recently argued in favour of this view, dubbing it the Creative View. I argue that the Creative View is mistaken if it claims that natural selection serves to answer Paley’s question. This is shown by a case that brings out the contrastive structure inherent in this demand for explanation. There is, however, a rather trivial sense in which specific environmental conditions are crucial for (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Newtonian forces and evolutionary biology: A problem and solution for extending the force interpretation.Joshua Filler - 2009 - Philosophy of Science 76 (5):774-783.
    There has recently been a renewed interest in the “force” interpretation of evolutionary biology. In this article, I present the general structure of the arguments for the force interpretation and identify a problem in its overly permissive conditions for being a Newtonian force. I then attempt a solution that (1) helps to illuminate the difference between forces and other types of causes and (2) makes room for random genetic drift as a force. In particular, I argue that forces are not (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations