Switch to: References

Add citations

You must login to add citations.
  1. Simulating Nelsonian Quantum Field Theory.Andrea Carosso - 2024 - Foundations of Physics 54 (3):1-31.
    We describe the picture of physical processes suggested by Edward Nelson’s stochastic mechanics when generalized to quantum field theory regularized on a lattice, after an introductory review of his theory applied to the hydrogen atom. By performing numerical simulations of the relevant stochastic processes, we observe that Nelson’s theory provides a means of generating typical field configurations for any given quantum state. In particular, an intuitive picture is given of the field “beable”—to use a phrase of John Stewart Bell—corresponding to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The causal axioms of algebraic quantum field theory: A diagnostic.Francisco Calderón - 2024 - Studies in History and Philosophy of Science Part A 104 (C):98-108.
    Algebraic quantum field theory (AQFT) puts forward three ``causal axioms'' that aim to characterize the theory as one that implements relativistic causation: the spectrum condition, microcausality, and primitive causality. In this paper, I aim to show, in a minimally technical way, that none of them fully explains the notion of causation appropriate for AQFT because they only capture some of the desiderata for relativistic causation I state or because it is often unclear how each axiom implements its respective desideratum. After (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The sky is blue, and other reasons quantum mechanics is not underdetermined by evidence.David Wallace - 2023 - European Journal for Philosophy of Science 13 (4):1-29.
    I criticize the widely-defended view that the quantum measurement problem is an example of underdetermination of theory by evidence: more specifically, the view that the unmodified, unitary quantum formalism (interpreted following Everett) is empirically indistinguishable from Bohmian Mechanics and from dynamical-collapse theories like the GRW or CSL theories. I argue that there as yet no empirically successful generalization of either theory to interacting quantum field theory and so the apparent underdetermination is broken by a very large class of quantum experiments (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Wait, Why Gauge?Sébastien Rivat - forthcoming - British Journal for the Philosophy of Science.
    Philosophers of physics have spent much effort unpacking the structure of gauge theories. But surprisingly, little attention has been devoted to the question of why we should require our best theories to be locally gauge invariant in the first place. Drawing on Steven Weinberg's works in the mid-1960s, I argue that the principle of local gauge invariance follows from Lorentz invariance and other natural assumptions in the context of perturbative relativistic quantum field theory. On this view, gauge freedom is a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Role of Quantum Jumps in Quantum Ontology.Rainer Dick - 2023 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 54 (4):567-597.
    Quantum theory determines the evolution of quantum states between quantum jumps. Quantum theory also allows us to calculate rates of quantum jumps and, on a probabilistic level, the outcomes of those quantum jumps. Both quantum jumps and the continuous evolution of quantum states are important in the time evolution of quantum systems, and the scattering matrix ties those seemingly disparate concepts together. Indeed, quantum jumps are so essential in quantum dynamics that we should refocus discussion of a quantum ontology on (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Generalized frameworks: Structuring searches for new physics.Adam Koberinski - 2023 - European Journal for Philosophy of Science 13 (1):1-23.
    Many areas of frontier physics are confronted with the crisis of a lack of accessible, direct evidence. As a result, direct model building has failed to lead to any new empirical discoveries. In this paper I argue that these areas of frontier physics have developed common methods for turning precision measurements of known quantities into potential evidence for anomalies hinting at new physics. This method of framework generalization has arisen as a sort of model-independent method for generalizing beyond known physics (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The fundamentality of fields.Charles T. Sebens - 2022 - Synthese 200 (5):1-28.
    There is debate as to whether quantum field theory is, at bottom, a quantum theory of fields or particles. One can take a field approach to the theory, using wave functionals over field configurations, or a particle approach, using wave functions over particle configurations. This article argues for a field approach, presenting three advantages over a particle approach: particle wave functions are not available for photons, a classical field model of the electron gives a superior account of both spin and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Four Attitudes Towards Singularities in the Search for a Theory of Quantum Gravity.Karen Crowther & Sebastian De Haro - 2022 - In Antonio Vassallo (ed.), The Foundations of Spacetime Physics: Philosophical Perspectives. New York, NY: Routledge. pp. 223-250.
    Singularities in general relativity and quantum field theory are often taken not only to motivate the search for a more-fundamental theory (quantum gravity, QG), but also to characterise this new theory and shape expectations of what it is to achieve. Here, we first evaluate how particular types of singularities may suggest an incompleteness of current theories. We then classify four different 'attitudes' towards singularities in the search for QG, and show, through examples in the physics literature, that these lead to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bottoms up: The Standard Model Effective Field Theory from a model perspective.Philip Bechtle, Cristin Chall, Martin King, Michael Krämer, Peter Mättig & Michael Stöltzner - 2022 - Studies in History and Philosophy of Science Part A 92 (C):129-143.
    Experiments in particle physics have hitherto failed to produce any significant evidence for the many explicit models of physics beyond the Standard Model (BSM) that had been proposed over the past decades. As a result, physicists have increasingly turned to model-independent strategies as tools in searching for a wide range of possible BSM effects. In this paper, we describe the Standard Model Effective Field Theory (SM-EFT) and analyse it in the context of the philosophical discussions about models, theories, and (bottom-up) (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Dogmas of Effective Field Theory: Scheme Dependence, Fundamental Parameters, and the Many Faces of the Higgs Naturalness Principle.Joshua Rosaler - 2021 - Foundations of Physics 52 (1):1-32.
    The earliest formulation of the Higgs naturalness argument has been criticized on the grounds that it relies on a particular cutoff-based regularization scheme. One response to this criticism has been to circumvent the worry by reformulating the naturalness argument in terms of a renormalized, regulator-independent parametrization. An alternative response is to deny that regulator dependence poses a problem for the naturalness argument, because nature itself furnishes a particular, physically correct regulator for any effective field theory in the form of that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Effective theories and infinite idealizations: a challenge for scientific realism.Sébastien Rivat - 2020 - Synthese 198 (12):12107-12136.
    Williams and J. Fraser have recently argued that effective field theory methods enable scientific realists to make more reliable ontological commitments in quantum field theory than those commonly made. In this paper, I show that the interpretative relevance of these methods extends beyond the specific context of QFT by identifying common structural features shared by effective theories across physics. In particular, I argue that effective theories are best characterized by the fact that they contain intrinsic empirical limitations, and I extract (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • The dissipative approach to quantum field theory: conceptual foundations and ontological implications.Andrea Oldofredi & Hans Christian Öttinger - 2020 - European Journal for Philosophy of Science 11 (1):1-36.
    Many attempts have been made to provide Quantum Field Theory with conceptually clear and mathematically rigorous foundations; remarkable examples are the Bohmian and the algebraic perspectives respectively. In this essay we introduce the dissipative approach to QFT, a new alternative formulation of the theory explaining the phenomena of particle creation and annihilation starting from nonequilibrium thermodynamics. It is shown that DQFT presents a rigorous mathematical structure, and a clear particle ontology, taking the best from the mentioned perspectives. Finally, after the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Philosophy of Physics.Mario Bacelar Valente - 2012 - History and Philosophy of Science and Technology - EOLSS.
    Philosophy of Physics has emerged recently as a scholarly important subfield of philosophy of science. However outside the small community of experts it is not a well-known field. It is not clear even to experts the exact nature of the field: how much philosophical is it? What is its relation to physics? In this work it is presented an overview of philosophy of physics that tries to answer these and other questions.
    Download  
     
    Export citation  
     
    Bookmark  
  • Renormalization Group Realism: The Ascent of Pessimism.Laura Ruetsche - 2018 - Philosophy of Science 85 (5):1176-1189.
    One realist response to the pessimistic meta-induction distinguishes idle theoretical wheels from aspects of successful theories we can expect to persist and espouses realism about the latter. Implementing the response requires a strategy for identifying the distinguished aspects. The strategy I will call renormalization group realism has the virtue of directly engaging the gears of our best current physics—perturbative quantum field theories. I argue that the strategy, rather than disarming the skeptical possibilities evinced by the pessimistic meta-induction, forces them to (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • How to Be a Relativistic Spacetime State Realist.Noel Swanson - 2018 - British Journal for the Philosophy of Science 71 (3):933-957.
    According to spacetime state realism, the fundamental ontology of a quantum mechanical world consists of a state-valued field evolving in four-dimensional spacetime. One chief advantage it claims over rival wave-function realist views is its natural compatibility with relativistic quantum field theory. I argue that the original density operator formulation of SSR cannot be extended to QFTs where the local observables form type III von Neumann algebras. Instead, I propose a new formulation of SSR in terms of a presheaf of local (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • The Limits of Physical Equivalence in Algebraic Quantum Field Theory.Tracy Lupher - 2016 - British Journal for the Philosophy of Science 69 (2):553-576.
    Some physicists and philosophers argue that unitarily inequivalent representations in quantum field theory are mathematical surplus structure. Support for that view, sometimes called ‘algebraic imperialism’, relies on Fell’s theorem and its deployment in the algebraic approach to QFT. The algebraic imperialist uses Fell’s theorem to argue that UIRs are ‘physically equivalent’ to each other. The mathematical, conceptual, and dynamical aspects of Fell’s theorem will be examined. Its use as a criterion for physical equivalence is examined in detail and it is (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Proposal for a Coherent Ontology of Fundamental Entities.Diego Romero-Maltrana, Federico Benitez & Cristian Soto - 2018 - Foundations of Science 23 (4):705-717.
    We argue that the distinction between framework and interaction theories should be taken carefully into consideration when dealing with the philosophical implications of fundamental theories in physics. In particular, conclusions concerning the nature of reality can only be consistently derived from assessing the ontological and epistemic purport of both types of theories. We put forward an epistemic form of realism regarding framework theories, such as Quantum Field Theory. The latter, indeed, informs us about the general properties of quantum fields, laying (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Scientific Realism Made Effective.Porter Williams - 2019 - British Journal for the Philosophy of Science 70 (1):209-237.
    I argue that a common philosophical approach to the interpretation of physical theories—particularly quantum field theories—has led philosophers astray. It has driven many to declare the quantum field theories employed by practicing physicists, so-called ‘effective field theories’, to be unfit for philosophical interpretation. In particular, such theories have been deemed unable to support a realist interpretation. I argue that these claims are mistaken: attending to the manner in which these theories are employed in physical practice, I show that interpreting effective (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Renormalizability, fundamentality and a final theory: The role of UV-completion in the search for quantum gravity.Karen Crowther & Niels Linnemann - 2017 - British Journal for the Philosophy of Science 70 (2):377–406.
    Principles are central to physical reasoning, particularly in the search for a theory of quantum gravity (QG), where novel empirical data is lacking. One principle widely adopted in the search for QG is UV completion: the idea that a theory should (formally) hold up to all possible high energies. We argue---/contra/ standard scientific practice---that UV-completion is poorly-motivated as a guiding principle in theory-construction, and cannot be used as a criterion of theory-justification in the search for QG. For this, we explore (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • QFT, antimatter, and symmetry.David Wallace - 2009 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 40 (3):209-222.
    A systematic analysis is made of the relations between the symmetries of a classical field and the symmetries of the one-particle quantum system that results from quantizing that field in regimes where interactions are weak. The results are applied to gain a greater insight into the phenomenon of antimatter.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Emergence of particles from bosonic quantum field theory.David Wallace - manuscript
    An examination is made of the way in which particles emerge from linear, bosonic, massive quantum field theories. Two different constructions of the one-particle subspace of such theories are given, both illustrating the importance of the interplay between the quantum-mechanical linear structure and the classical one. Some comments are made on the Newton-Wigner representation of one-particle states, and on the relationship between the approach of this paper and those of Segal, and of Haag and Ruelle.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Being, Becoming and the Undivided Universe: A Dialogue Between Relational Blockworld and the Implicate Order Concerning the Unification of Relativity and Quantum Theory.Michael Silberstein, W. M. Stuckey & Timothy McDevitt - 2013 - Foundations of Physics 43 (4):502-532.
    In this paper two different approaches to unification will be compared, Relational Blockworld (RBW) and Hiley’s implicate order. Both approaches are monistic in that they attempt to derive matter and spacetime geometry ‘at once’ in an interdependent and background independent fashion from something underneath both quantum theory and relativity. Hiley’s monism resides in the implicate order via Clifford algebras and is based on process as fundamental while RBW’s monism resides in spacetimematter via path integrals over graphs whereby space, time and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Objectivity Sans Intelligibility. Hermann Weyl's Symbolic Constructivism.Iulian D. Toader - 2011 - Dissertation, University of Notre Dame
    A new form of skepticism is described, which holds that objectivity and understanding are incompossible ideals of modern science. This is attributed to Weyl, hence its name: Weylean skepticism. Two general defeat strategies are then proposed, one of which is rejected.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Taking particle physics seriously: A critique of the algebraic approach to quantum field theory.David Wallace - 2010 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 42 (2):116-125.
    I argue against the currently prevalent view that algebraic quantum field theory (AQFT) is the correct framework for philosophy of quantum field theory and that “conventional” quantum field theory (CQFT), of the sort used in mainstream particle physics, is not suitable for foundational study. In doing so, I defend that position that AQFT and CQFT should be understood as rival programs to resolve the mathematical and physical pathologies of renormalization theory, and that CQFT has succeeded in this task and AQFT (...)
    Download  
     
    Export citation  
     
    Bookmark   68 citations  
  • Quantum Mechanics on Spacetime I: Spacetime State Realism.David Wallace & Christopher Gordon Timpson - 2010 - British Journal for the Philosophy of Science 61 (4):697-727.
    What ontology does realism about the quantum state suggest? The main extant view in contemporary philosophy of physics is wave-function realism . We elaborate the sense in which wave-function realism does provide an ontological picture, and defend it from certain objections that have been raised against it. However, there are good reasons to be dissatisfied with wave-function realism, as we go on to elaborate. This motivates the development of an opposing picture: what we call spacetime state realism , a view (...)
    Download  
     
    Export citation  
     
    Bookmark   122 citations  
  • Many-worlds interpretation of quantum mechanics.Lev Vaidman - 2008 - Stanford Encyclopedia of Philosophy.
    The Many-Worlds Interpretation (MWI) is an approach to quantum mechanics according to which, in addition to the world we are aware of directly, there are many other similar worlds which exist in parallel at the same space and time. The existence of the other worlds makes it possible to remove randomness and action at a distance from quantum theory and thus from all physics.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • The quantum measurement problem: State of play.David Wallace - 2008 - In Dean Rickles (ed.), The Ashgate Companion to Contemporary Philosophy of Physics. Ashgate.
    This is a preliminary version of an article to appear in the forthcoming Ashgate Companion to the New Philosophy of Physics.In it, I aim to review, in a way accessible to foundationally interested physicists as well as physics-informed philosophers, just where we have got to in the quest for a solution to the measurement problem. I don't advocate any particular approach to the measurement problem (not here, at any rate!) but I do focus on the importance of decoherence theory to (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • Against Field Interpretations of Quantum Field Theory.David John Baker - 2009 - British Journal for the Philosophy of Science 60 (3):585-609.
    I examine some problems standing in the way of a successful `field interpretation' of quantum field theory. The most popular extant proposal depends on the Hilbert space of `wavefunctionals.' But since wavefunctional space is unitarily equivalent to many-particle Fock space, two of the most powerful arguments against particle interpretations also undermine this form of field interpretation. IntroductionField Interpretations and Field OperatorsThe Wavefunctional InterpretationFields and Inequivalent Representations 4.1. The Rindler representation 4.2. Spontaneous symmetry breaking 4.3. Coherent representations The Fate of Fields (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • The RT formula and its discontents: spacetime and entanglement.Jonathan Bain - 2020 - Synthese 198 (12):11833-11860.
    This essay is concerned with a number of related proposals that claim there is a link between spacetime topology and quantum entanglement. I indicate the extent to which these proposals can be understood as stating a duality, and then consider two general approaches to articulating such a duality: a “state-based” approach, under which one attempts to identify relevant topological states as dual to quantum entangled states; and an “observable-based” approach, under which one attempts to identify relevant topological observables as dual (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Particle Creation and Annihilation: Two Bohmian Approaches.Andrea Oldofredi - 2018 - Lato Sensu: Revue de la Société de Philosophie des Sciences 5 (1):77-85.
    This paper reviews and discusses two extensions of Bohmian Mechanics to the phenomena of particle creation and annihilation typically observed in Quantum Field Theory : the so-called Bell-type Quantum Field Theory and the Dirac Sea representation. These theories have a secure metaphysical basis as they postulate a particle ontology while satisfying the requirements imposed by the Primitive Ontology approach to quantum physics. Furthermore, their methodological perspective intentionally provides a set of rules to immunize physical theories to the conceptual and technical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Appearing Out of Nowhere: The Emergence of Spacetime in Quantum Gravity.Karen Crowther - 2014 - Dissertation, University of Sydney
    Quantum gravity is understood as a theory that, in some sense, unifies general relativity (GR) and quantum theory, and is supposed to replace GR at extremely small distances (high-energies). It may be that quantum gravity represents the breakdown of spacetime geometry described by GR. The relationship between quantum gravity and spacetime has been deemed ``emergence'', and the aim of this thesis is to investigate and explicate this relation. After finding traditional philosophical accounts of emergence to be inappropriate, I develop a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Unitary inequivalence as a problem for structural realism.Steven French - 2012 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 43 (2):121-136.
    Howard argues that the existence of unitarily inequivalent representations in Quantum Field Theory presents a problem for structural realism in this context. I consider two potential ways round this problem: 1), follow Wallace in adopting the 'naive' Lagrangian form of QFT with cut-offs; 2), adapt Ruetsche's 'Swiss Army Knife' approach. The first takes us into the current debate between Wallace and Fraser on conventional vs. algebraic QFT. The second involves consideration of the role of inequivalent representations in understanding spontaneous symmetry (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Pluralists about Pluralism? Versions of Explanatory Pluralism in Psychiatry.Jeroen Van Bouwel - 2014 - In Thomas Uebel (ed.), New Directions in the Philosophy of Science. Cham: Springer. pp. 105-119.
    In this contribution, I comment on Raffaella Campaner’s defense of explanatory pluralism in psychiatry (in this volume). In her paper, Campaner focuses primarily on explanatory pluralism in contrast to explanatory reductionism. Furthermore, she distinguishes between pluralists who consider pluralism to be a temporary state on the one hand and pluralists who consider it to be a persisting state on the other hand. I suggest that it would be helpful to distinguish more than those two versions of pluralism – different understandings (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • On the CPT theorem.Hilary Greaves & Teruji Thomas - 2014 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 45:46-65.
    We provide a careful development and rigorous proof of the CPT theorem within the framework of mainstream quantum field theory. This is in contrast to the usual rigorous proofs in purely axiomatic frameworks, and non-rigorous proof-sketches in the mainstream approach. We construct the CPT transformation for a general field directly, without appealing to the enumerative classification of representations, and in a manner that is clearly related to the requirements of our proof. Our approach applies equally in Minkowski spacetimes of any (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The standard model as a philosophical challenge.Edward MacKinnon - 2008 - Philosophy of Science 75 (4):447-457.
    There are two opposing traditions in contemporary quantum field theory (QFT). Mainstream Lagrangian QFT led to and supports the standard model of particle interactions. Algebraic QFT seeks to provide a rigorous consistent mathematical foundation for field theory, but cannot accommodate the local gauge interactions of the standard model. Interested philosophers face a choice. They can accept algebraic QFT on the grounds of mathematical consistency and general accord with the semantic conception of theory interpretation. This suggests a rejection of particle ontology. (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Antimatter.David John Baker & Hans Halvorson - 2010 - British Journal for the Philosophy of Science 61 (1):93-121.
    The nature of antimatter is examined in the context of algebraic quantum field theory. It is shown that the notion of antimatter is more general than that of antiparticles. Properly speaking, then, antimatter is not matter made up of antiparticles—rather, antiparticles are particles made up of antimatter. We go on to discuss whether the notion of antimatter is itself completely general in quantum field theory. Does the matter–antimatter distinction apply to all field theoretic systems? The answer depends on which of (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Schwinger and the ontology of quantum field theory.Edward MacKinnon - 2007 - Foundations of Science 12 (4):295-323.
    An epistemological interpretation of quantum mechanics hinges on the claim that the distinctive features of quantum mechanics can be derived from some distinctive features of an observational basis. Old and new variations of this theme are listed. The program has a limited success in non-relativistic quantum mechanics. The crucial issue is how far it can be extended to quantum field theory without introducing significant ontological postulates. A C*-formulation covers algebraic quantum field theory, but not the standard model. Julian Schwinger’s anabatic (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Renormalization group methods and the epistemology of effective field theories.Adam Koberinski & Doreen Fraser - 2023 - Studies in History and Philosophy of Science Part A 98 (C):14-28.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Scientific realism and underdetermination in quantum theory.Matthias Egg & Juha Saatsi - 2021 - Philosophy Compass 16 (11):e12773.
    This paper surveys the status of scientific realism in relation to quantum physics, focusing on the problem of underdetermination.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Localizable Particles in the Classical Limit of Quantum Field Theory.Rory Soiffer, Jonah Librande & Benjamin H. Feintzeig - 2021 - Foundations of Physics 51 (2):1-31.
    A number of arguments purport to show that quantum field theory cannot be given an interpretation in terms of localizable particles. We show, in light of such arguments, that the classical ħ→0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\hbar \rightarrow 0$$\end{document} limit can aid our understanding of the particle content of quantum field theories. In particular, we demonstrate that for the massive Klein–Gordon field, the classical limits of number operators can be understood to encode local information about particles (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Exchange Forces in Particle Physics.Gregg Jaeger - 2021 - Foundations of Physics 51 (1):1-31.
    The operation of fundamental forces in quantum field theory is explicated here as the exchange of particles, consistently with the standard methodology of particle physics. The particles involved are seen to bear little relation to any classical particle but, rather, comprise unified collections of compresent, conserved quantities indicated by propagators. The exchange particles, which supervene upon quantum fields, are neither more fundamental than fields nor replace them as has often previously been assumed in models of exchange forces. It is argued (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Betting on Future Physics.Mike D. Schneider - 2022 - British Journal for the Philosophy of Science 73 (1):161-183.
    The ‘cosmological constant problem’ has historically been understood as describing a conflict between cosmological observations in the framework of general relativity and theoretical predictions from quantum field theory, which a future theory of quantum gravity ought to resolve. I argue that this view of the CCP is best understood in terms of a bet about future physics made on the basis of particular interpretational choices in GR and QFT, respectively. Crucially, each of these choices must be taken as itself grounded (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Quantum Theory of Fields.David Wallace - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge.
    I give an introduction to the conceptual structure of quantum field theory as it is used in mainstream theoretical physics today, aimed at non-specialists. My main focuses in the article are the common structure of quantum field theory as it is applied in solid-state physics and as it is applied in high-energy physics; the modern theory of renormalisation.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Status of Scaling Limits as Approximations in Quantum Theories.Benjamin Feintzeig - unknown
    This paper attempts to make sense of a notion of ``approximation on certain scales'' in physical theories. I use this notion to understand the classical limit of ordinary quantum mechanics as a kind of scaling limit, showing that the mathematical tools of strict quantization allow one to make the notion of approximation precise. I then compare this example with the scaling limits involved in renormalization procedures for effective field theories. I argue that one does not yet have the mathematical tools (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Reconciling axiomatic quantum field theory with cutoff-dependent particle physics.Adam Koberinski - manuscript
    The debate between Fraser and Wallace over the foundations of quantum field theory has spawned increased focus on both the axiomatic and conventional formalisms. The debate has set the tone for future foundational analysis, and has forced philosophers to “pick a side”. The two are seen as competing research programs, and the major divide between the two manifests in how each handles renormalization. In this paper I argue that the terms set by the Fraser-Wallace debate are misleading. AQFT and CQFT (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Trope ontology and algebraic quantum field theory: An Evaluation of Kuhlmann's proposal.Emanuele Rossanese - 2013 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 44 (4):417-423.
    Meinard Kuhlmann has recently provided an interpretation of quantum field theory that seems to offer an alternative to the particle and field interpretations. The main idea is to adopt a trope ontology and, then, consider particles and fields as derivative entities. The aim of this paper is to discuss Kuhlmann's proposal. In the first part of the paper I will offer a reconstruction of his position. I will then show that this interpretation faces some problems about the distinction between essential (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Life and Death in the Tails of the Wave Function.David Wallace - unknown
    It seems to be widely assumed that the only effect of the Ghirardi-Rimini-Weber dynamical collapse mechanism on the `tails' of the wavefunction is to reduce their weight. In consequence it seems to be generally accepted that the tails behave exactly as do the various branches in the Everett interpretation except for their much lower weight. These assumptions are demonstrably inaccurate: the collapse mechanism has substantial and detectable effects within the tails. The relevance of this misconception for the dynamical-collapse theories is (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On emergence in gauge theories at the ’t Hooft limit‘.Nazim Bouatta & Jeremy Butterfield - 2015 - European Journal for Philosophy of Science 5 (1):55-87.
    Quantum field theories are notoriously difficult to understand, physically as well as philosophically. The aim of this paper is to contribute to a better conceptual understanding of gauge quantum field theories, such as quantum chromodynamics, by discussing a famous physical limit, the ’t Hooft limit, in which the theory concerned often simplifies. The idea of the limit is that the number N of colours goes to infinity. The simplifications that can happen in this limit, and that we will consider, are: (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Observers and Locality in Everett Quantum Field Theory.Mark A. Rubin - 2011 - Foundations of Physics 41 (7):1236-1262.
    A model for measurement in collapse-free nonrelativistic fermionic quantum field theory is presented. In addition to local propagation and effectively-local interactions, the model incorporates explicit representations of localized observers, thus extending an earlier model of entanglement generation in Everett quantum field theory (Rubin in Found. Phys. 32:1495–1523, 2002). Transformations of the field operators from the Heisenberg picture to the Deutsch-Hayden picture, involving fictitious auxiliary fields, establish the locality of the model. The model is applied to manifestly-local calculations of the results (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Entanglement Structure of Quantum Field Systems.Vincent Lam - 2013 - International Studies in the Philosophy of Science 27 (1):59 - 72.
    This article discusses the peculiar features of quantum entanglement and quantum non-locality within the algebraic approach to relativistic quantum field theory (RQFT). The debate on the ontology of RQFT is considered in the light of these well-known but little discussed features. In particular, this article examines the ontic structural realist understanding of quantum entanglement and quantum non-locality and its contribution to this debate.
    Download  
     
    Export citation  
     
    Bookmark   11 citations