Switch to: References

Add citations

You must login to add citations.
  1. Frege, Dedekind, and the Modern Epistemology of Arithmetic.Markus Pantsar - 2016 - Acta Analytica 31 (3):297-318.
    In early analytic philosophy, one of the most central questions concerned the status of arithmetical objects. Frege argued against the popular conception that we arrive at natural numbers with a psychological process of abstraction. Instead, he wanted to show that arithmetical truths can be derived from the truths of logic, thus eliminating all psychological components. Meanwhile, Dedekind and Peano developed axiomatic systems of arithmetic. The differences between the logicist and axiomatic approaches turned out to be philosophical as well as mathematical. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Klassinen matematiikka ja logiikka.Panu Raatikainen - 1996 - In Christoffer Gefwert (ed.), Logiikka, matematiikka ja tietokone – Perusteet: historiaa, filosofiaa ja sovelluksia. Finnish Artificial Intelligence Society.
    Toisaalta ennennäkemätön äärettömien joukko-opillisten menetelmien hyödyntäminen sekä toisaalta epäilyt niiden hyväksyttävyydestä ja halu oikeuttaa niiden käyttö ovat ratkaisevasti muovanneet vuosisatamme matematiikkaa ja logiikkaa. Tämän kehityksen vaikutus nykyajan filosofiaan on myös ollut valtaisa; merkittävää osaa siitä ei voi edes ymmärtää tuntematta sen yhteyttä tähän matematiikan ja logiikan vallankumoukseen. Lähestymistapoja, jotka tavalla tai toisella hyväksyvät äärettömän matematiikan ja perinteisten logiikan sääntöjen (erityisesti kolmannen poissuljetun lain) soveltamisen myös sen piirissä, on tullut tavaksi kutsua klassiseksi matematiikaksi ja logiikaksi erotuksena nämä hylkäävistä radikaaleista intuitionistisista ja (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Laskettavuuden teorian varhaishistoria.Panu Raatikainen - 1995 - In Älyn oppihistoria – matka logiikan, psykologian ja tekoälyn juurille. Espoo: Finnish Artificial Intelligence Society.
    Nykyaikaisen logiikan keskeisenä tutkimuskohteena ovat erilaiset formalisoidut teoriat. Erityisesti vuosisadan vaihteen aikoihin matematiikan perusteiden tutkimuksessa ilmaantuneiden hämmentävien paradoksien (Russell 1902, 1903) jälkeen (ks. kuitenkin jo Frege 1879, Dedekind 1888, Peano 1889; vrt. Wang 1957) keskeiset matemaattiset teoriat on pyritty tällaisten vaikeuksien välttämiseksi uudelleen muotoilemaan täsmällisesti keinotekoisessa symbolikielessä, jonka lauseenmuodostussäännöt on täsmällisesti ja yksikäsitteisesti määrätty. Edelleen teoriat on pyritty aksiomatisoimaan, ts. on pyritty antamaan joukko peruslauseita, joista kaikki muut - tai ainakin mahdollisimman monet - teorian todet lauseet voidaan loogisesti johtaa tarkoin (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege, Kant, and the logic in logicism.John MacFarlane - 2002 - Philosophical Review 111 (1):25-65.
    Let me start with a well-known story. Kant held that logic and conceptual analysis alone cannot account for our knowledge of arithmetic: “however we might turn and twist our concepts, we could never, by the mere analysis of them, and without the aid of intuition, discover what is the sum [7+5]” (KrV, B16). Frege took himself to have shown that Kant was wrong about this. According to Frege’s logicist thesis, every arithmetical concept can be defined in purely logical terms, and (...)
    Download  
     
    Export citation  
     
    Bookmark   121 citations  
  • Peano's axioms in their historical context.Michael Segre - 1994 - Archive for History of Exact Sciences 48 (3-4):201-342.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Transfinite Induction on Ordinal Configurations.Luiz Paulo de Alcantara & Walter Alexandre Carnielli - 1981 - Mathematical Logic Quarterly 27 (31-35):531-538.
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege’s Attack on “Abstraction” and his Defense of the “Applicability” of Arithmetic.Daniël F. M. Strauss - 2003 - South African Journal of Philosophy 22 (1):63-80.
    The traditional understanding of abstraction operates on the basis of the assumption that only entities are subject to thought processes in which particulars are disregarded and commonalities are lifted out (the so-called method of genus proximum and differentia specifica). On this basis Frege criticized the notion of abstraction and convincingly argued that (this kind of) “entitary- directed” abstraction can never provide us with any numbers. However, Frege did not consider the alternative of “property- abstraction.” In this article an argument for (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Geometry and generality in Frege's philosophy of arithmetic.Jamie Tappenden - 1995 - Synthese 102 (3):319 - 361.
    This paper develops some respects in which the philosophy of mathematics can fruitfully be informed by mathematical practice, through examining Frege's Grundlagen in its historical setting. The first sections of the paper are devoted to elaborating some aspects of nineteenth century mathematics which informed Frege's early work. (These events are of considerable philosophical significance even apart from the connection with Frege.) In the middle sections, some minor themes of Grundlagen are developed: the relationship Frege envisions between arithmetic and geometry and (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • The unity of logic, pedagogy and foundations in Grassmann's mathematical work.Albert C. Lewis - 2004 - History and Philosophy of Logic 25 (1):15-36.
    Hermann Grassmann's Ausdehnungslehre of 1844 and his Lehrbuch der Arithmetik of 1861 are landmark works in mathematics; the former not only developed new mathematical fields but also both contributed to the setting of modern standards of rigor. Their very modernity, however, may obscure features of Grassmann's view of the foundations of mathematics that were not adopted since. Grassmann gave a key role to the learning of mathematics that affected his method of presentation, including his emphasis on making initial assumptions explicit. (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)Epistemic logicism & Russell's regressive method.A. D. Irvine - 1989 - Philosophical Studies 55 (3):303 - 327.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Frege and the rigorization of analysis.William Demopoulos - 1994 - Journal of Philosophical Logic 23 (3):225 - 245.
    This paper has three goals: (i) to show that the foundational program begun in the Begriffsschroft, and carried forward in the Grundlagen, represented Frege's attempt to establish the autonomy of arithmetic from geometry and kinematics; the cogency and coherence of 'intuitive' reasoning were not in question. (ii) To place Frege's logicism in the context of the nineteenth century tradition in mathematical analysis, and, in particular, to show how the modern concept of a function made it possible for Frege to pursue (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Arithmetic and geometry: Some remarks on the concept of complementarity.M. Otte - 1990 - Studies in Philosophy and Education 10 (1):37-62.
    This paper explores the classical idea of complementarity in mathematics concerning the relationship of intuition and axiomatic proof. Section I illustrates the basic concepts of the paper, while Section II presents opposing accounts of intuitionist and axiomatic approaches to mathematics. Section III analyzes one of Einstein's lecture on the topic and Section IV examines an application of the issues in mathematics and science education. Section V discusses the idea of complementarity by examining one of Zeno's paradoxes. This is followed by (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Towards a re-evaluation of Julius könig's contribution to logic.Miriam Franchella - 2000 - Bulletin of Symbolic Logic 6 (1):45-66.
    Julius König is famous for his mistaken attempt to demonstrate that the continuum hypothesis was false. It is also known that the only positive result that could have survived from his proof is the paradox which bears his name. Less famous is his 1914 book Neue Grundlagen der Logik, Arithmetik und Mengenlehre. Still, it contains original contributions to logic, like the concept of metatheory and the solution of paradoxes based on the refusal of the law of bivalence. We are going (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Kurt gödel.Juliette Kennedy - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Der Charakter der Mathematik zwischen Philosophie und Wissenschaft.Michael Otte - 1989 - Philosophica 43:79-126.
    Download  
     
    Export citation  
     
    Bookmark