Switch to: References

Add citations

You must login to add citations.
  1. Proof Theory for Modal Logic.Sara Negri - 2011 - Philosophy Compass 6 (8):523-538.
    The axiomatic presentation of modal systems and the standard formulations of natural deduction and sequent calculus for modal logic are reviewed, together with the difficulties that emerge with these approaches. Generalizations of standard proof systems are then presented. These include, among others, display calculi, hypersequents, and labelled systems, with the latter surveyed from a closer perspective.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Proofs and Countermodels in Non-Classical Logics.Sara Negri - 2014 - Logica Universalis 8 (1):25-60.
    Proofs and countermodels are the two sides of completeness proofs, but, in general, failure to find one does not automatically give the other. The limitation is encountered also for decidable non-classical logics in traditional completeness proofs based on Henkin’s method of maximal consistent sets of formulas. A method is presented that makes it possible to establish completeness in a direct way: For any given sequent either a proof in the given logical system or a countermodel in the corresponding frame class (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Embedding formalisms: hypersequents and two-level systems of rule.Agata Ciabattoni & Francesco A. Genco - 2016 - In Lev Beklemishev, Stéphane Demri & András Máté (eds.), Advances in Modal Logic, Volume 11. CSLI Publications. pp. 197-216.
    Download  
     
    Export citation  
     
    Bookmark  
  • Proofnets for S5: sequents and circuits for modal logic.Greg Restall - 2007 - In C. Dimitracopoulos, L. Newelski & D. Normann (eds.), Logic Colloquium 2005: Proceedings of the Annual European Summer Meeting of the Association for Symbolic Logic, Held in Athens, Greece, July 28-August 3, 2005. Cambridge: Cambridge University Press. pp. 151-172.
    In this paper I introduce a sequent system for the propositional modal logic S5. Derivations of valid sequents in the system are shown to correspond to proofs in a novel natural deduction system of circuit proofs (reminiscient of proofnets in linear logic, or multiple-conclusion calculi for classical logic). -/- The sequent derivations and proofnets are both simple extensions of sequents and proofnets for classical propositional logic, in which the new machinery—to take account of the modal vocabulary—is directly motivated in terms (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Hypersequent and Display Calculi – a Unified Perspective.Agata Ciabattoni, Revantha Ramanayake & Heinrich Wansing - 2014 - Studia Logica 102 (6):1245-1294.
    This paper presents an overview of the methods of hypersequents and display sequents in the proof theory of non-classical logics. In contrast with existing surveys dedicated to hypersequent calculi or to display calculi, our aim is to provide a unified perspective on these two formalisms highlighting their differences and similarities and discussing applications and recent results connecting and comparing them.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A Deep Inference System for the Modal Logic S5.Phiniki Stouppa - 2007 - Studia Logica 85 (2):199-214.
    We present a cut-admissible system for the modal logic S5 in a formalism that makes explicit and intensive use of deep inference. Deep inference is induced by the methods applied so far in conceptually pure systems for this logic. The system enjoys systematicity and modularity, two important properties that should be satisfied by modal systems. Furthermore, it enjoys a simple and direct design: the rules are few and the modal rules are in exact correspondence to the modal axioms.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Display calculi for logics with relative accessibility relations.Stéphane Demri & Rajeev Goré - 2000 - Journal of Logic, Language and Information 9 (2):213-236.
    We define cut-free display calculi for knowledge logics wherean indiscernibility relation is associated to each set of agents, andwhere agents decide the membership of objects using thisindiscernibility relation. To do so, we first translate the knowledgelogics into polymodal logics axiomatised by primitive axioms and thenuse Kracht's results on properly displayable logics to define thedisplay calculi. Apart from these technical results, we argue thatDisplay Logic is a natural framework to define cut-free calculi for manyother logics with relative accessibility relations.
    Download  
     
    Export citation  
     
    Bookmark   1 citation