Switch to: References

Citations of:

Mathematics and its foundations

Mind 47 (188):440-451 (1938)

Add citations

You must login to add citations.
  1. Tba.Juliet Floyd - 2016 - Nordic Wittgenstein Review 5 (2):7-89.
    [This Invited Paper will be published in December 2016.].
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Prose versus proof: Wittgenstein on gödel, Tarski and Truth.Juliet Floyd - 2001 - Philosophia Mathematica 9 (3):280-307.
    A survey of current evidence available concerning Wittgenstein's attitude toward, and knowledge of, Gödel's first incompleteness theorem, including his discussions with Turing, Watson and others in 1937–1939, and later testimony of Goodstein and Kreisel; 2) Discussion of the philosophical and historical importance of Wittgenstein's attitude toward Gödel's and other theorems in mathematical logic, contrasting this attitude with that of, e.g., Penrose; 3) Replies to an instructive criticism of my 1995 paper by Mark Steiner which assesses the importance of Tarski's semantical (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Alan Turing and the mathematical objection.Gualtiero Piccinini - 2003 - Minds and Machines 13 (1):23-48.
    This paper concerns Alan Turing’s ideas about machines, mathematical methods of proof, and intelligence. By the late 1930s, Kurt Gödel and other logicians, including Turing himself, had shown that no finite set of rules could be used to generate all true mathematical statements. Yet according to Turing, there was no upper bound to the number of mathematical truths provable by intelligent human beings, for they could invent new rules and methods of proof. So, the output of a human mathematician, for (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Wittgenstein and finitism.Mathieu Marion - 1995 - Synthese 105 (2):141 - 176.
    In this paper, elementary but hitherto overlooked connections are established between Wittgenstein's remarks on mathematics, written during his transitional period, and free-variable finitism. After giving a brief description of theTractatus Logico-Philosophicus on quantifiers and generality, I present in the first section Wittgenstein's rejection of quantification theory and his account of general arithmetical propositions, to use modern jargon, as claims (as opposed to statements). As in Skolem's primitive recursive arithmetic and Goodstein's equational calculus, Wittgenstein represented generality by the use of free (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Metamathematics and the philosophy of mind.Judson Webb - 1968 - Philosophy of Science 35 (June):156-78.
    The metamathematical theorems of Gödel and Church are frequently applied to the philosophy of mind, typically as rational evidence against mechanism. Using methods of Post and Smullyan, these results are presented as purely mathematical theorems and various such applications are discussed critically. In particular, J. Lucas's use of Gödel's theorem to distinguish between conscious and unconscious beings is refuted, while more generally, attempts to extract philosophy from metamathematics are shown to involve only dramatizations of the constructivity problem in foundations. More (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Wittgenstein and Gödel: An Attempt to Make ‘Wittgenstein’s Objection’ Reasonable†.Timm Lampert - 2018 - Philosophia Mathematica 26 (3):324-345.
    According to some scholars, such as Rodych and Steiner, Wittgenstein objects to Gödel’s undecidability proof of his formula $$G$$, arguing that given a proof of $$G$$, one could relinquish the meta-mathematical interpretation of $$G$$ instead of relinquishing the assumption that Principia Mathematica is correct. Most scholars agree that such an objection, be it Wittgenstein’s or not, rests on an inadequate understanding of Gödel’s proof. In this paper, I argue that there is a possible reading of such an objection that is, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Misunderstanding gödel: New arguments about Wittgenstein and new remarks by Wittgenstein.Victor Rodych - 2003 - Dialectica 57 (3):279–313.
    The long‐standing issue of Wittgenstein's controversial remarks on Gödel's Theorem has recently heated up in a number of different and interesting directions [, , ]. In their , Juliet Floyd and Hilary Putnam purport to argue that Wittgenstein's‘notorious’ “Contains a philosophical claim of great interest,” namely, “if one assumed. that →P is provable in Russell's system one should… give up the “translation” of P by the English sentence ‘P is not provable’,” because if ωP is provable in PM, PM is (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Cahiers D'ÉPistÉMologie.Mathieu Marion - unknown
    Cette publication, la trois cent vingt-troisième de la série, a été rendue possible grâce à la contribution financière du FQRSC (Fonds québécois de recherche sur la société et la culture).
    Download  
     
    Export citation  
     
    Bookmark  
  • Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This book brings together philosophers, mathematicians and logicians to penetrate important problems in the philosophy and foundations of mathematics. In philosophy, one has been concerned with the opposition between constructivism and classical mathematics and the different ontological and epistemological views that are reflected in this opposition. The dominant foundational framework for current mathematics is classical logic and set theory with the axiom of choice. This framework is, however, laden with philosophical difficulties. One important alternative foundational programme that is actively pursued (...)
    Download  
     
    Export citation  
     
    Bookmark