Switch to: References

Add citations

You must login to add citations.
  1. Ethischer Diskurs zu Epigenetik und Genomeditierung: die Gefahr eines (epi-)genetischen Determinismus und naturwissenschaftlich strittiger Grundannahmen.Karla Karoline Sonne Kalinka Alex & Eva C. Winkler - 2021 - In Boris Fehse, Ferdinand Hucho, Sina Bartfeld, Stephan Clemens, Tobias Erb, Heiner Fangerau, Jürgen Hampel, Martin Korte, Lilian Marx-Stölting, Stefan Mundlos, Angela Osterheider, Anja Pichl, Jens Reich, Hannah Schickl, Silke Schicktanz, Jochen Taupitz, Jörn Walter, Eva Winkler & Martin Zenke (eds.), Fünfter Gentechnologiebericht: Sachstand und Perspektiven für Forschung und Anwendung. pp. 299-323.
    Slightly modified excerpt from the section 13.4 Zusammenfassung und Ausblick (translated into englisch): This chapter is based on an analysis of ethical debates on epigenetics and genome editing, debates, in which ethical arguments relating to future generations and justice play a central role. The analysis aims to contextualize new developments in genetic engineering, such as genome and epigenome editing, ethically. At the beginning, the assumptions of "genetic determinism," on which "genetic essentialism" is based, of "epigenetic determinism" as well as "genetic" (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)A Theory of Conceptual Advance: Explaining Conceptual Change in Evolutionary, Molecular, and Evolutionary Developmental Biology.Ingo Brigandt - 2006 - Dissertation, University of Pittsburgh
    The theory of concepts advanced in the dissertation aims at accounting for a) how a concept makes successful practice possible, and b) how a scientific concept can be subject to rational change in the course of history. Traditional accounts in the philosophy of science have usually studied concepts in terms only of their reference; their concern is to establish a stability of reference in order to address the incommensurability problem. My discussion, in contrast, suggests that each scientific concept consists of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Realism and Lexical Flexibility.Christopher A. Vogel - 2020 - Theoria 86 (2):145-186.
    Metaphysical investigation often proceeds by way of linguistic meaning. This tradition relies on an assumption about meanings, namely that they can be given in terms of referential relations and truth. Chomsky and others have illustrated the difficulty with this externalist hypothesis regarding natural language meanings, which implies that natural languages are ill‐suited for the purposes of metaphysical investigation. In reply to this discordance between the features of natural languages and the goals of metaphysical investigation, metaphysicians propose that we look to (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Scientific Pluralism.Stephen H. Kellert, Helen E. Longino & C. Kenneth Waters (eds.) - 1956 - Univ of Minnesota Press.
    Scientific pluralism is an issue at the forefront of philosophy of science. This landmark work addresses the question, Can pluralism be advanced as a general, philosophical interpretation of science?
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Pluralists about Pluralism? Versions of Explanatory Pluralism in Psychiatry.Jeroen Van Bouwel - 2014 - In Thomas Uebel (ed.), New Directions in the Philosophy of Science. Cham: Springer. pp. 105-119.
    In this contribution, I comment on Raffaella Campaner’s defense of explanatory pluralism in psychiatry (in this volume). In her paper, Campaner focuses primarily on explanatory pluralism in contrast to explanatory reductionism. Furthermore, she distinguishes between pluralists who consider pluralism to be a temporary state on the one hand and pluralists who consider it to be a persisting state on the other hand. I suggest that it would be helpful to distinguish more than those two versions of pluralism – different understandings (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • It Takes Two to Tango: Genotyping and Phenotyping in Genome-Wide Association Studies.Ohad Nachtomy, Yaron Ramati, Ayelet Shavit & Zohar Yakhini - 2009 - Biological Theory 4 (3):294-301.
    In this article we examine the “phenotype” concept in light of recent technological advances in Genome-Wide Association Studies . By observing the technology and its presuppositions, we put forward the thesis that at least in this case genotype and phenotype are effectively coidentifled one by means of the other. We suggest that the coidentiflcation of genotype-phenotype couples in expression-based GWAS also indicates a conceptual dependence, which we call “co-deñnition.” We note that viewing these terms as codeflned runs against possible expectations, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Selection without replicators: the origin of genes, and the replicator/interactor distinction in etiobiology.John S. Wilkins, Ian Musgrave & Clem Stanyon - 2012 - Biology and Philosophy 27 (2):215-239.
    Genes are thought to have evolved from long-lived and multiply-interactive molecules in the early stages of the origins of life. However, at that stage there were no replicators, and the distinction between interactors and replicators did not yet apply. Nevertheless, the process of evolution that proceeded from initial autocatalytic hypercycles to full organisms was a Darwinian process of selection of favourable variants. We distinguish therefore between Neo-Darwinian evolution and the related Weismannian and Central Dogma divisions, on the one hand, and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Philosophy of Biology.Ingo Brigandt - 2011 - In Steven French & Juha Saatsi (eds.), Continuum Companion to the Philosophy of Science. Continuum. pp. 246-267.
    This overview of philosophy of biology lays out what implications biology and recent philosophy of biology have for general philosophy of science. The following topics are addressed in five sections: natural kinds, conceptual change, discovery and confirmation, explanation and reduction, and naturalism.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Epistemic Goal of a Concept: Accounting for the Rationality of Semantic Change and Variation.Ingo Brigandt - 2010 - Synthese 177 (1):19-40.
    The discussion presents a framework of concepts that is intended to account for the rationality of semantic change and variation, suggesting that each scientific concept consists of three components of content: 1) reference, 2) inferential role, and 3) the epistemic goal pursued with the concept’s use. I argue that in the course of history a concept can change in any of these components, and that change in the concept’s inferential role and reference can be accounted for as being rational relative (...)
    Download  
     
    Export citation  
     
    Bookmark   83 citations  
  • Idealizing Reduction: The Microfoundations of Macroeconomics. [REVIEW]Kevin D. Hoover - 2010 - Erkenntnis 73 (3):329 - 347.
    The dominant view among macroeconomists is that macroeconomics reduces to microeconomics, both in the sense that all macroeconomic phenomena arise out of microeconomic phenomena and in the sense that macroeconomic theory—to the extent that it is correct—can be derived from microeconomic theory. More than that, the dominant view believes that macroeconomics should in practice use the reduced microeconomic theory: this is the program of microfoundations for macroeconomics to which the vast majority of macroeconomists adhere. The "microfoundational" models that they actually (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • When Traditional Essentialism Fails: Biological Natural Kinds.Robert A. Wilson, Matthew J. Barker & Ingo Brigandt - 2007 - Philosophical Topics 35 (1-2):189-215.
    Essentialism is widely regarded as a mistaken view of biological kinds, such as species. After recounting why (sections 2-3), we provide a brief survey of the chief responses to the “death of essentialism” in the philosophy of biology (section 4). We then develop one of these responses, the claim that biological kinds are homeostatic property clusters (sections 5-6) illustrating this view with several novel examples (section 7). Although this view was first expressed 20 years ago, and has received recent discussion (...)
    Download  
     
    Export citation  
     
    Bookmark   109 citations  
  • Reference, Truth, and Biological Kinds.Marcel Weber - 2014 - In: J. Dutant, D. Fassio and A. Meylan (Eds.) Liber Amicorum Pascal Engel.
    This paper examines causal theories of reference with respect to how plausible an account they give of non-physical natural kind terms such as ‘gene’ as well as of the truth of the associated theoretical claims. I first show that reference fixism for ‘gene’ fails. By this, I mean the claim that the reference of ‘gene’ was stable over longer historical periods, for example, since the classical period of transmission genetics. Second, I show that the theory of partial reference does not (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • How Are Biology Concepts Used and Transformed?Ingo Brigandt - 2019 - In Kostas Kampourakis & Tobias Uller (eds.), Philosophy of Science for Biologists. New York, NY: Cambridge University Press. pp. 79–101.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Dynamics of Scientific Concepts: The Relevance of Epistemic Aims and Values.Ingo Brigandt - 2012 - In Uljana Feest & Friedrich Steinle (eds.), Scientific Concepts and Investigative Practice. de Gruyter. pp. 75-103.
    The philosophy of science that grew out of logical positivism construed scientific knowledge in terms of set of interconnected beliefs about the world, such as theories and observation statements. Nowadays science is also conceived of as a dynamic process based on the various practices of individual scientists and the institutional settings of science. Two features particularly influence the dynamics of scientific knowledge: epistemic standards and aims (e.g., assumptions about what issues are currently in need of scientific study and explanation). While (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Typology Reconfigured: From the Metaphysics of Essentialism to the Epistemology of Representation.Alan C. Love - 2008 - Acta Biotheoretica 57 (1-2):51-75.
    The goal of this paper is to encourage a reconfiguration of the discussion about typology in biology away from the metaphysics of essentialism and toward the epistemology of classifying natural phenomena for the purposes of empirical inquiry. First, I briefly review arguments concerning ‘typological thinking’, essentialism, species, and natural kinds, highlighting their predominantly metaphysical nature. Second, I use a distinction between the aims, strategies, and tactics of science to suggest how a shift from metaphysics to epistemology might be accomplished. Typological (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Molecular genetics.Ken Waters - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Relations among fields: Mendelian, cytological and molecular mechanisms.Lindley Darden - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):349-371.
    Philosophers have proposed various kinds of relations between Mendelian genetics and molecular biology: reduction, replacement, explanatory extension. This paper argues that the two fields are best characterized as investigating different, serially integrated, hereditary mechanisms. The mechanisms operate at different times and contain different working entities. The working entities of the mechanisms of Mendelian heredity are chromosomes, whose movements serve to segregate alleles and independently assort genes in different linkage groups. The working entities of numerous mechanisms of molecular biology are larger (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • A Critique of David Chalmers’ and Frank Jackson’s Account of Concepts.Ingo Brigandt - 2013 - ProtoSociology 30:63-88.
    David Chalmers and Frank Jackson have promoted a strong program of conceptual analysis, which accords a significant philosophical role to the a priori analysis of concepts. They found this methodological program on an account of concepts using two-dimensional semantics. This paper argues that Chalmers and Jackson’s account of concepts, and the related approach by David Braddon-Mitchell, is inadequate for natural kind concepts as found in biology. Two-dimensional semantics is metaphysically faulty as an account of the nature of concepts and concept (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Environmental Ethics.Roberta L. Millstein - 2013 - In Kostas Kampourakis (ed.), The Philosophy of Biology: a Companion for Educators. Dordrecht: Springer.
    A number of areas of biology raise questions about what is of value in the natural environment and how we ought to behave towards it: conservation biology, environmental science, and ecology, to name a few. Based on my experience teaching students from these and similar majors, I argue that the field of environmental ethics has much to teach these students. They come to me with pent-up questions and a feeling that more is needed to fully engage in their subjects, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • John Cook Wilson.Mathieu Marion - 2010 - Stanford Encyclopedia of Philosophy.
    John Cook Wilson (1849–1915) was Wykeham Professor of Logic at New College, Oxford and the founder of ‘Oxford Realism’, a philosophical movement that flourished at Oxford during the first decades of the 20th century. Although trained as a classicist and a mathematician, his most important contribution was to the theory of knowledge, where he argued that knowledge is factive and not definable in terms of belief, and he criticized ‘hybrid’ and ‘externalist’ accounts. He also argued for direct realism in perception, (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Biological information.Stephen M. Downes - 2015 - In Sahotra Sarkar & Jessica Pfeifer (eds.), Philosophy of Science: An Encyclopedia. Routledge.
    This paper discussses various concepts of biological information with particular attention being paid to genetic information.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Reduction.A. Hütterman & A. C. Love - 2014 - In Paul Humphreys (ed.), The Oxford Handbook of Philosophy of Science. New York, NY, USA: Oxford University Press. pp. 460-484.
    Reduction and reductionism have been central philosophical topics in analytic philosophy of science for more than six decades. Together they encompass a diversity of issues from metaphysics and epistemology. This article provides an introduction to the topic that illuminates how contemporary epistemological discussions took their shape historically and limns the contours of concrete cases of reduction in specific natural sciences. The unity of science and the impulse to accomplish compositional reduction in accord with a layer-cake vision of the sciences, the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Gene.Hans-Jörg Rheinberger - 2008 - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Beyond theoretical reduction and layer-cake antireduction: How DNA retooled genetics and transformed biological practice.C. Kenneth Waters - unknown
    Watson and Crick’s discovery of the structure of DNA led to developments that transformed many biological sciences. But what were the relevant developments and how did they transform biology? Much of the philosophical discussion concerning this question can be organized around two opposing views: theoretical reductionism and layer-cake antireductionism. Theoretical reductionist and their anti-reductionist foes hold two assumptions in common. First, both hold that biological knowledge is structured like a layer cake, with some biological sciences, such as molecular biology cast (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Genes in the postgenomic era.Paul E. Griffiths & Karola Stotz - 2006 - Theoretical Medicine and Bioethics 27 (6):499-521.
    We outline three very different concepts of the gene—instrumental, nominal, and postgenomic. The instrumental gene has a critical role in the construction and interpretation of experiments in which the relationship between genotype and phenotype is explored via hybridization between organisms or directly between nucleic acid molecules. It also plays an important theoretical role in the foundations of disciplines such as quantitative genetics and population genetics. The nominal gene is a critical practical tool, allowing stable communication between bioscientists in a wide (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • (1 other version)How biologists conceptualize genes: an empirical study.Karola Stotz, Paul E. Griffiths & Rob Knight - 2004 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 35 (4):647-673.
    Philosophers and historians of biology have argued that genes are conceptualized differently in different fields of biology and that these differences influence both the conduct of research and the interpretation of research by audiences outside the field in which the research was conducted. In this paper we report the results of a questionnaire study of how genes are conceptualized by biological scientists at the University of Sydney, Australia. The results provide tentative support for some hypotheses about conceptual differences between different (...)
    Download  
     
    Export citation  
     
    Bookmark   60 citations  
  • Limitations of Natural Kind Talk in the Life Sciences: Homology and Other Cases. [REVIEW]Miles MacLeod - 2013 - Biological Theory 7 (2):109-120.
    The aim of this article is to detail some reservations against the beliefs, claims, or presuppositions that current essentialist natural kind concepts (including homeostatic property cluster kinds) model grouping practices in the life sciences accurately and generally. Such concepts fit reasoning into particular preconceived epistemic and semantic patterns. The ability of these patterns to fit scientific practice is often argued in support of homeostatic property cluster accounts, yet there are reasons to think that in the life sciences kind concepts exhibit (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Is it a revolution?Peter Godfrey-Smith - 2007 - Biology and Philosophy 22 (3):429-437.
    Jablonka and Lamb's claim that evolutionary biology is undergoing a ‘revolution’ is queried. But the very concept of revolutionary change has uncertain application to a field organized in the manner of contemporary biology. The explanatory primacy of sequence properties is also discussed.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Experimental philosophy of biology: notes from the field.Karola Stotz - 2009 - Studies in History and Philosophy of Science Part A 40 (2):233-237.
    I use a recent ‘experimental philosophy’ study of the concept of the gene conducted by myself and collaborators to discuss the broader epistemological framework within which that research was conducted, and to reflect on the relationship between science, history and philosophy of science, and society.Keywords: Experimental philosophy; Biohumanities; Representing Genes Project; Gene concept; Science criticism; Conceptual ecology.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Ask Not "What is an Individual?".C. Kenneth Waters - 2018 - In O. Bueno, R. Chen & M. B. Fagan (eds.), Individuation across Experimental and Theoretical Sciences. Oxford University Press.
    Philosophers of biology typically pose questions about individuation by asking “what is an individual?” For example, we ask, “what is an individual species”, “what is an individual organism”, and “what is an individual gene?” In the first part of this chapter, I present my account of the gene concept and how it is used in investigative practices in order to motivate a more pragmatic approach. Instead of asking “what is a gene?”, I ask: “how do biologists individuate genes?”, “for what (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Gene.Paul E. Griffiths & Karola Stotz - 2007 - In David L. Hull & Michael Ruse (eds.), The Cambridge Companion to the Philosophy of Biology. New York: Cambridge University Press.
    The historian Raphael Falk has described the gene as a ‘concept in tension’ (Falk 2000) – an idea pulled this way and that by the differing demands of different kinds of biological work. Several authors have suggested that in the light of contemporary molecular biology ‘gene’ is no more than a handy term which acquires a specific meaning only in a specific scientific context in which it occurs. Hence the best way to answer the question ‘what is a gene’, and (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations