Switch to: References

Add citations

You must login to add citations.
  1. On the Philosophy of Unsupervised Learning.David S. Watson - 2023 - Philosophy and Technology 36 (2):1-26.
    Unsupervised learning algorithms are widely used for many important statistical tasks with numerous applications in science and industry. Yet despite their prevalence, they have attracted remarkably little philosophical scrutiny to date. This stands in stark contrast to supervised and reinforcement learning algorithms, which have been widely studied and critically evaluated, often with an emphasis on ethical concerns. In this article, I analyze three canonical unsupervised learning problems: clustering, abstraction, and generative modeling. I argue that these methods raise unique epistemological and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Local Explanations via Necessity and Sufficiency: Unifying Theory and Practice.David S. Watson, Limor Gultchin, Ankur Taly & Luciano Floridi - 2022 - Minds and Machines 32 (1):185-218.
    Necessity and sufficiency are the building blocks of all successful explanations. Yet despite their importance, these notions have been conceptually underdeveloped and inconsistently applied in explainable artificial intelligence, a fast-growing research area that is so far lacking in firm theoretical foundations. In this article, an expanded version of a paper originally presented at the 37th Conference on Uncertainty in Artificial Intelligence, we attempt to fill this gap. Building on work in logic, probability, and causality, we establish the central role of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Conceptual challenges for interpretable machine learning.David S. Watson - 2022 - Synthese 200 (2):1-33.
    As machine learning has gradually entered into ever more sectors of public and private life, there has been a growing demand for algorithmic explainability. How can we make the predictions of complex statistical models more intelligible to end users? A subdiscipline of computer science known as interpretable machine learning (IML) has emerged to address this urgent question. Numerous influential methods have been proposed, from local linear approximations to rule lists and counterfactuals. In this article, I highlight three conceptual challenges that (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2021 - AI and Society.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • (1 other version)The ethics of algorithms: key problems and solutions.Andreas Tsamados, Nikita Aggarwal, Josh Cowls, Jessica Morley, Huw Roberts, Mariarosaria Taddeo & Luciano Floridi - 2022 - AI and Society 37 (1):215-230.
    Research on the ethics of algorithms has grown substantially over the past decade. Alongside the exponential development and application of machine learning algorithms, new ethical problems and solutions relating to their ubiquitous use in society have been proposed. This article builds on a review of the ethics of algorithms published in 2016, 2016). The goals are to contribute to the debate on the identification and analysis of the ethical implications of algorithms, to provide an updated analysis of epistemic and normative (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Sources of Understanding in Supervised Machine Learning Models.Paulo Pirozelli - 2022 - Philosophy and Technology 35 (2):1-19.
    In the last decades, supervised machine learning has seen the widespread growth of highly complex, non-interpretable models, of which deep neural networks are the most typical representative. Due to their complexity, these models have showed an outstanding performance in a series of tasks, as in image recognition and machine translation. Recently, though, there has been an important discussion over whether those non-interpretable models are able to provide any sort of understanding whatsoever. For some scholars, only interpretable models can provide understanding. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Switch, the Ladder, and the Matrix: Models for Classifying AI Systems.Jakob Mökander, Margi Sheth, David S. Watson & Luciano Floridi - 2023 - Minds and Machines 33 (1):221-248.
    Organisations that design and deploy artificial intelligence (AI) systems increasingly commit themselves to high-level, ethical principles. However, there still exists a gap between principles and practices in AI ethics. One major obstacle organisations face when attempting to operationalise AI Ethics is the lack of a well-defined material scope. Put differently, the question to which systems and processes AI ethics principles ought to apply remains unanswered. Of course, there exists no universally accepted definition of AI, and different systems pose different ethical (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Tacit knowledge and a multi-method approach in Asset Management.Giovanni Holanda, Jorge Moreira de Souza, Cristina Y. K. Obata Adorni & Marcos Vanine P. de Nader - 2022 - Logeion Filosofia da Informação 8 (2):197-212.
    This paper has two main objectives. The first one is to reflect on the validity of data in analysis and projections that underpin the engineering asset management of organizations, considering, on the one hand, a certain resistance or even inadequate use of data and information of a subjective nature and; on the other hand, a consolidated reliance on quantitative approaches and decisions based on data series. The second objective is to contextualize the applicability of combining qualitative data based on experts’ (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)AI and its new winter: from myths to realities.Luciano Floridi - 2020 - Philosophy and Technology 33 (1):1-3.
    An AI winter may be defined as the stage when technology, business, and the media come to terms with what AI can or cannot really do as a technology without exaggeration. Through discussion of previous AI winters, this paper examines the hype cycle (which by turn characterises AI as a social panacea or a nightmare of apocalyptic proportions) and argues that AI should be treated as a normal technology, neither as a miracle nor as a plague, but rather as of (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • What is Interpretability?Adrian Erasmus, Tyler D. P. Brunet & Eyal Fisher - 2021 - Philosophy and Technology 34:833–862.
    We argue that artificial networks are explainable and offer a novel theory of interpretability. Two sets of conceptual questions are prominent in theoretical engagements with artificial neural networks, especially in the context of medical artificial intelligence: Are networks explainable, and if so, what does it mean to explain the output of a network? And what does it mean for a network to be interpretable? We argue that accounts of “explanation” tailored specifically to neural networks have ineffectively reinvented the wheel. In (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Explainability, Public Reason, and Medical Artificial Intelligence.Michael Da Silva - 2023 - Ethical Theory and Moral Practice 26 (5):743-762.
    The contention that medical artificial intelligence (AI) should be ‘explainable’ is widespread in contemporary philosophy and in legal and best practice documents. Yet critics argue that ‘explainability’ is not a stable concept; non-explainable AI is often more accurate; mechanisms intended to improve explainability do not improve understanding and introduce new epistemic concerns; and explainability requirements are ad hoc where human medical decision-making is often opaque. A recent ‘political response’ to these issues contends that AI used in high-stakes scenarios, including medical (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Defining Explanation and Explanatory Depth in XAI.Stefan Buijsman - 2022 - Minds and Machines 32 (3):563-584.
    Explainable artificial intelligence (XAI) aims to help people understand black box algorithms, particularly of their outputs. But what are these explanations and when is one explanation better than another? The manipulationist definition of explanation from the philosophy of science offers good answers to these questions, holding that an explanation consists of a generalization that shows what happens in counterfactual cases. Furthermore, when it comes to explanatory depth this account holds that a generalization that has more abstract variables, is broader in (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Philosophy of science at sea: Clarifying the interpretability of machine learning.Claus Beisbart & Tim Räz - 2022 - Philosophy Compass 17 (6):e12830.
    Philosophy Compass, Volume 17, Issue 6, June 2022.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Simple Models in Complex Worlds: Occam’s Razor and Statistical Learning Theory.Falco J. Bargagli Stoffi, Gustavo Cevolani & Giorgio Gnecco - 2022 - Minds and Machines 32 (1):13-42.
    The idea that “simplicity is a sign of truth”, and the related “Occam’s razor” principle, stating that, all other things being equal, simpler models should be preferred to more complex ones, have been long discussed in philosophy and science. We explore these ideas in the context of supervised machine learning, namely the branch of artificial intelligence that studies algorithms which balance simplicity and accuracy in order to effectively learn about the features of the underlying domain. Focusing on statistical learning theory, (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Explainable AI and Causal Understanding: Counterfactual Approaches Considered.Sam Baron - 2023 - Minds and Machines 33 (2):347-377.
    The counterfactual approach to explainable AI (XAI) seeks to provide understanding of AI systems through the provision of counterfactual explanations. In a recent systematic review, Chou et al. (Inform Fus 81:59–83, 2022) argue that the counterfactual approach does not clearly provide causal understanding. They diagnose the problem in terms of the underlying framework within which the counterfactual approach has been developed. To date, the counterfactual approach has not been developed in concert with the approach for specifying causes developed by Pearl (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations