Switch to: References

Add citations

You must login to add citations.
  1. Typology and Natural Kinds in Evo-Devo.Ingo Brigandt - 2021 - In Nuño De La Rosa Laura & Müller Gerd (eds.), Evolutionary Developmental Biology: A Reference Guide. Springer. pp. 483-493.
    The traditional practice of establishing morphological types and investigating morphological organization has found new support from evolutionary developmental biology (evo-devo), especially with respect to the notion of body plans. Despite recurring claims that typology is at odds with evolutionary thinking, evo-devo offers mechanistic explanations of the evolutionary origin, transformation, and evolvability of morphological organization. In parallel, philosophers have developed non-essentialist conceptions of natural kinds that permit kinds to exhibit variation and undergo change. This not only facilitates a construal of species (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Phenotype-first hypotheses, spandrels and early metazoan evolution.Joshua Rust - 2022 - History and Philosophy of the Life Sciences 44 (4):1-23.
    Against the neo-Darwinian assumption that genetic factors are the principal source of variation upon which natural selection operates, a phenotype-first hypothesis strikes us as revolutionary because development would seem to constitute an independent source of variability. Richard Watson and his co-authors have argued that developmental memory constitutes one such variety of phenotypic variability. While this version of the phenotype-first hypothesis is especially well-suited for the late metazoan context, where animals have a sufficient history of selection from which to draw, appeals (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The environment: An ambiguous concept in Waddington's biology.Laurent Loison - 2022 - Studies in History and Philosophy of Science Part A 91 (C):181-190.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The molecular and mathematical basis of Waddington's epigenetic landscape: A framework for post‐Darwinian biology?Sui Huang - 2012 - Bioessays 34 (2):149-157.
    The Neo‐Darwinian concept of natural selection is plausible when one assumes a straightforward causation of phenotype by genotype. However, such simple 1:1 mapping must now give place to the modern concepts of gene regulatory networks and gene expression noise. Both can, in the absence of genetic mutations, jointly generate a diversity of inheritable randomly occupied phenotypic states that could also serve as a substrate for natural selection. This form of epigenetic dynamics challenges Neo‐Darwinism. It needs to incorporate the non‐linear, stochastic (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Causal specificity and the instructive–permissive distinction.Brett Calcott - 2017 - Biology and Philosophy 32 (4):481-505.
    I use some recent formal work on measuring causation to explore a suggestion by James Woodward: that the notion of causal specificity can clarify the distinction in biology between permissive and instructive causes. This distinction arises when a complex developmental process, such as the formation of an entire body part, can be triggered by a simple switch, such as the presence of particular protein. In such cases, the protein is said to merely induce or "permit" the developmental process, whilst the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Waddington’s Legacy to Developmental and Theoretical Biology.Jonathan B. L. Bard - 2008 - Biological Theory 3 (3):188-197.
    Conrad Hal Waddington was a British developmental biologist who mainly worked in Cambridge and Edinburgh, but spent the late 1930s with Morgan in California learning about Drosophila. He was the first person to realize that development depended on the then unknown activities of genes, and he needed an appropriate model organism. His major experimental contributions were to show how mutation analysis could be used to investigate developmental mechanisms in Drosophila, and to explore how developmental mutation could drive evolution, his other (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • A systems biology view of evolutionary genetics.Jonathan Bard - 2010 - Bioessays 32 (7):559-563.
    Download  
     
    Export citation  
     
    Bookmark   2 citations