Switch to: References

Add citations

You must login to add citations.
  1. Socratic Proofs and Paraconsistency: A Case Study.Andrzej Wiśniewski, Guido Vanackere & Dorota Leszczyńska - 2005 - Studia Logica 80 (2):431-466.
    This paper develops a new proof method for two propositional paraconsistent logics: the propositional part of Batens' weak paraconsistent logic CLuN and Schütte's maximally paraconsistent logic Φv. Proofs are de.ned as certain sequences of questions. The method is grounded in Inferential Erotetic Logic.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Method of Socratic Proofs: From the Logic of Questions to Proof Theory.Dorota Leszczyńska-Jasion - 2021 - In Moritz Cordes (ed.), Asking and Answering: Rivalling Approaches to Interrogative Methods. Tübingen: Narr Francke Attempto. pp. 183–198.
    I consider two cognitive phenomena: inquiring and justifying, as complementary processes running in opposite directions. I explain on an example that the former process is driven by questions and the latter is a codification of the results of the first one. Traditionally, proof theory focuses on the latter process, and thus describes the former, at best, as an example of a backward proof search. I argue that this is not the best way to analyze cognitive processes driven by questions, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An Essay on Inferential Erotetic Logic.Andrzej Wiśniewski - 2021 - In Moritz Cordes (ed.), Asking and Answering: Rivalling Approaches to Interrogative Methods. Tübingen: Narr Francke Attempto. pp. 105–138.
    By and large, Inferential Erotetic Logic (IEL, for short) is an approach to the logic of questions which puts in the centre of attention inferential aspects of questioning. IEL is not an enterprise of the last few years only. The idea originates from the late 1980s. It evolved through time. Initially, the stress was put on the phenomenon of question raising. This changed gradually, as some forms of reasoning that involve questions have appeared to be analyzable by means of the (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Abductive Question-Answer System for the Minimal Logic of Formal Inconsistency $$\mathsf {mbC}$$ mbC.Szymon Chlebowski, Andrzej Gajda & Mariusz Urbański - 2021 - Studia Logica 110 (2):479-509.
    The aim in this paper is to define an Abductive Question-Answer System for the minimal logic of formal inconsistency \. As a proof-theoretical basis we employ the Socratic proofs method. The system produces abductive hypotheses; these are answers to abductive questions concerning derivability of formulas from sets of formulas. We integrated the generation of and the evaluation of hypotheses via constraints of consistency and significance being imposed on the system rules.
    Download  
     
    Export citation  
     
    Bookmark  
  • Socratic Trees.Dorota Leszczyńska-Jasion, Mariusz Urbański & Andrzej Wiśniewski - 2013 - Studia Logica 101 (5):959-986.
    The method of Socratic proofs (SP-method) simulates the solving of logical problem by pure questioning. An outcome of an application of the SP-method is a sequence of questions, called a Socratic transformation. Our aim is to give a method of translation of Socratic transformations into trees. We address this issue both conceptually and by providing certain algorithms. We show that the trees which correspond to successful Socratic transformations—that is, to Socratic proofs—may be regarded, after a slight modification, as Gentzen-style proofs. (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Method of Socratic Proofs for Modal Propositional Logics: K5, S4.2, S4.3, S4F, S4R, S4M and G.Dorota Leszczyńska-Jasion - 2008 - Studia Logica 89 (3):365-399.
    The aim of this paper is to present the method of Socratic proofs for seven modal propositional logics: K5, S4.2, S4.3, S4M, S4F, S4R and G. This work is an extension of [10] where the method was presented for the most common modal propositional logics: K, D, T, KB, K4, S4 and S5.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Dual Erotetic Calculi and the Minimal LFI.Szymon Chlebowski & Dorota Leszczyńska-Jasion - 2015 - Studia Logica 103 (6):1245-1278.
    An erotetic calculus for a given logic constitutes a sequent-style proof-theoretical formalization of the logic grounded in Inferential Erotetic Logic ). In this paper, a new erotetic calculus for Classical Propositional Logic ), dual with respect to the existing ones, is given. We modify the calculus to obtain complete proof systems for the propositional part of paraconsistent logic CLuN and its extensions CLuNs and mbC. The method is based on dual resolution. Moreover, the resolution rule is non-clausal. According to the (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Tableaux and Dual Tableaux: Transformation of Proofs.Joanna Golińska-Pilarek & Ewa Orłowska - 2007 - Studia Logica 85 (3):283-302.
    We present two proof systems for first-order logic with identity and without function symbols. The first one is an extension of the Rasiowa-Sikorski system with the rules for identity. This system is a validity checker. The rules of this system preserve and reflect validity of disjunctions of their premises and conclusions. The other is a Tableau system, which is an unsatisfiability checker. Its rules preserve and reflect unsatisfiability of conjunctions of their premises and conclusions. We show that the two systems (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Logic, Reasoning, and Rationality.Erik Weber, Joke Meheus & Dietlinde Wouters (eds.) - 2014 - Dordrecht, Netherland: Springer.
    This book contains a selection of the papers presented at the Logic, Reasoning and Rationality 2010 conference in Ghent. The conference aimed at stimulating the use of formal frameworks to explicate concrete cases of human reasoning, and conversely, to challenge scholars in formal studies by presenting them with interesting new cases of actual reasoning. According to the members of the Wiener Kreis, there was a strong connection between logic, reasoning, and rationality and that human reasoning is rational in so far (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A Loop-Free Decision Procedure for Modal Propositional Logics K4, S4 and S5.Dorota Leszczyńska-Jasion - 2009 - Journal of Philosophical Logic 38 (2):151-177.
    The aim of this paper is to present a loop-free decision procedure for modal propositional logics K4, S4 and S5. We prove that the procedure terminates and that it is sound and complete. The procedure is based on the method of Socratic proofs for modal logics, which is grounded in the logic of questions IEL.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Method of Socratic Proofs Meets Correspondence Analysis.Dorota Leszczyńska-Jasion, Yaroslav Petrukhin & Vasilyi Shangin - 2019 - Bulletin of the Section of Logic 48 (2):99-116.
    The goal of this paper is to propose correspondence analysis as a technique for generating the so-called erotetic calculi which constitute the method of Socratic proofs by Andrzej Wiśniewski. As we explain in the paper, in order to successfully design an erotetic calculus one needs invertible sequent-calculus-style rules. For this reason, the proposed correspondence analysis resulting in invertible rules can constitute a new foundation for the method of Socratic proofs. Correspondence analysis is Kooi and Tamminga's technique for designing proof systems. (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Rasiowa–Sikorski Deduction Systems with the Rule of Cut: A Case Study.Dorota Leszczyńska-Jasion, Mateusz Ignaszak & Szymon Chlebowski - 2019 - Studia Logica 107 (2):313-349.
    This paper presents Rasiowa–Sikorski deduction systems for logics \, \, \ and \. For each of the logics two systems are developed: an R–S system that can be supplemented with admissible cut rule, and a \-version of R–S system in which the non-admissible rule of cut is the only branching rule. The systems are presented in a Smullyan-like uniform notation, extended and adjusted to the aims of this paper. Completeness is proved by the use of abstract refutability properties which are (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Automatic proof generation in an axiomatic system for $\mathsf{CPL}$ by means of the method of Socratic proofs.Aleksandra Grzelak & Dorota Leszczyńska-Jasion - 2018 - Logic Journal of the IGPL 26 (1):109-148.
    Download  
     
    Export citation  
     
    Bookmark   2 citations