Switch to: References

Add citations

You must login to add citations.
  1. Kripke Completeness of Infinitary Predicate Multimodal Logics.Yoshihito Tanaka - 1999 - Notre Dame Journal of Formal Logic 40 (3):326-340.
    Kripke completeness of some infinitary predicate modal logics is presented. More precisely, we prove that if a normal modal logic above is -persistent and universal, the infinitary and predicate extension of with BF and BF is Kripke complete, where BF and BF denote the formulas pi pi and x x, respectively. The results include the completeness of extensions of standard modal logics such as , and its extensions by the schemata T, B, 4, 5, D, and their combinations. The proof (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • A map of common knowledge logics.Mamoru Kaneko, Takashi Nagashima, Nobu-Yuki Suzuki & Yoshihito Tanaka - 2002 - Studia Logica 71 (1):57-86.
    In order to capture the concept of common knowledge, various extensions of multi-modal epistemic logics, such as fixed-point ones and infinitary ones, have been proposed. Although we have now a good list of such proposed extensions, the relationships among them are still unclear. The purpose of this paper is to draw a map showing the relationships among them. In the propositional case, these extensions turn out to be all Kripke complete and can be comparable in a meaningful manner. F. Wolter (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • A Note on Algebraic Semantics for $mathsf{S5}$ with Propositional Quantifiers.Wesley H. Holliday - 2019 - Notre Dame Journal of Formal Logic 60 (2):311-332.
    In two of the earliest papers on extending modal logic with propositional quantifiers, R. A. Bull and K. Fine studied a modal logic S5Π extending S5 with axioms and rules for propositional quantification. Surprisingly, there seems to have been no proof in the literature of the completeness of S5Π with respect to its most natural algebraic semantics, with propositional quantifiers interpreted by meets and joins over all elements in a complete Boolean algebra. In this note, we give such a proof. (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Proof Theory of Infinitary Modal Logic.Matteo Tesi - 2022 - Studia Logica 110 (6):1349-1380.
    The article deals with infinitary modal logic. We first discuss the difficulties related to the development of a satisfactory proof theory and then we show how to overcome these problems by introducing a labelled sequent calculus which is sound and complete with respect to Kripke semantics. We establish the structural properties of the system, namely admissibility of the structural rules and of the cut rule. Finally, we show how to embed common knowledge in the infinitary calculus and we discuss first-order (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Model existence in non-compact modal logic.Yoshihito Tanaka - 2001 - Studia Logica 67 (1):61-73.
    Predicate modal logics based on Kwith non-compact extra axioms are discussed and a sufficient condition for the model existence theorem is presented. We deal with various axioms in a general way by an algebraic method, instead of discussing concrete non-compact axioms one by one.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • An Infinitary Extension of Jankov’s Theorem.Yoshihito Tanaka - 2007 - Studia Logica 86 (1):111-131.
    It is known that for any subdirectly irreducible finite Heyting algebra A and any Heyting algebra, B, A is embeddable into a quotient algebra of B, if and only if Jankov's formula ${\rm{\chi A}}$ A for A is refuted in B. In this paper, we present an infinitary extension of the above theorem given by Jankov. More precisely, for any cardinal number ${\rm{\kappa }}$, we present Jankov's theorem for homomorphisms preserving infinite meets and joins, a class of subdirectly irreducible complete (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • An extension of Jónsson‐Tarski representation and model existence in predicate non‐normal modal logics.Yoshihito Tanaka - 2022 - Mathematical Logic Quarterly 68 (2):189-201.
    We give an extension of the Jónsson‐Tarski representation theorem for both normal and non‐normal modal algebras so that it preserves countably many infinite meets and joins. In order to extend the Jónsson‐Tarski representation to non‐normal modal algebras we consider neighborhood frames instead of Kripke frames just as Došen's duality theorem for modal algebras, and to deal with infinite meets and joins, we make use of Q‐filters, which were introduced by Rasiowa and Sikorski, instead of prime filters. By means of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Small infinitary epistemic logics.Tai-wei Hu, Mamoru Kaneko & Nobu-Yuki Suzuki - 2019 - Review of Symbolic Logic 12 (4):702-735.
    We develop a series of small infinitary epistemic logics to study deductive inference involving intra-/interpersonal beliefs/knowledge such as common knowledge, common beliefs, and infinite regress of beliefs. Specifically, propositional epistemic logics GL are presented for ordinal α up to a given αo so that GL is finitary KDn with n agents and GL allows conjunctions of certain countably infinite formulae. GL is small in that the language is countable and can be constructive. The set of formulae Lα is increasing up (...)
    Download  
     
    Export citation  
     
    Bookmark