Switch to: References

Add citations

You must login to add citations.
  1. A Nonstandard Counterpart of WWKL.Stephen G. Simpson & Keita Yokoyama - 2011 - Notre Dame Journal of Formal Logic 52 (3):229-243.
    In this paper, we introduce a system of nonstandard second-order arithmetic $\mathsf{ns}$-$\mathsf{WWKL_0}$ which consists of $\mathsf{ns}$-$\mathsf{BASIC}$ plus Loeb measure property. Then we show that $\mathsf{ns}$-$\mathsf{WWKL_0}$ is a conservative extension of $\mathsf{WWKL_0}$ and we do Reverse Mathematics for this system.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Mass problems and measure-theoretic regularity.Stephen G. Simpson - 2009 - Bulletin of Symbolic Logic 15 (4):385-409.
    A well known fact is that every Lebesgue measurable set is regular, i.e., it includes an F$_{\sigma}$ set of the same measure. We analyze this fact from a metamathematical or foundational standpoint. We study a family of Muchnik degrees corresponding to measure-theoretic regularity at all levels of the effective Borel hierarchy. We prove some new results concerning Nies's notion of LR-reducibility. We build some $\omega$-models of RCA$_0$which are relevant for the reverse mathematics of measure-theoretic regularity.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Almost everywhere domination.Natasha L. Dobrinen & Stephen G. Simpson - 2004 - Journal of Symbolic Logic 69 (3):914-922.
    A Turing degree a is said to be almost everywhere dominating if, for almost all $X \in 2^{\omega}$ with respect to the "fair coin" probability measure on $2^{\omega}$ , and for all g: $\omega \rightarrow \omega$ Turing reducible to X, there exists f: $\omega \rightarrow \omega$ of Turing degree a which dominates g. We study the problem of characterizing the almost everywhere dominating Turing degrees and other, similarly defined classes of Turing degrees. We relate this problem to some questions in (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On the logical and computational properties of the Vitali covering theorem.Dag Normann & Sam Sanders - forthcoming - Annals of Pure and Applied Logic.
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Annals of Pure and Applied Logic. [REVIEW]Itay Neeman - 2003 - Bulletin of Symbolic Logic 9 (3):414-416.
    Download  
     
    Export citation  
     
    Bookmark  
  • Vitali's Theorem and WWKL.Douglas K. Brown, Mariagnese Giusto & Stephen G. Simpson - 2002 - Archive for Mathematical Logic 41 (2):191-206.
    Continuing the investigations of X. Yu and others, we study the role of set existence axioms in classical Lebesgue measure theory. We show that pairwise disjoint countable additivity for open sets of reals is provable in RCA0. We show that several well-known measure-theoretic propositions including the Vitali Covering Theorem are equivalent to WWKL over RCA0.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Randomness notions and reverse mathematics.André Nies & Paul Shafer - 2020 - Journal of Symbolic Logic 85 (1):271-299.
    We investigate the strength of a randomness notion ${\cal R}$ as a set-existence principle in second-order arithmetic: for each Z there is an X that is ${\cal R}$-random relative to Z. We show that the equivalence between 2-randomness and being infinitely often C-incompressible is provable in $RC{A_0}$. We verify that $RC{A_0}$ proves the basic implications among randomness notions: 2-random $\Rightarrow$ weakly 2-random $\Rightarrow$ Martin-Löf random $\Rightarrow$ computably random $\Rightarrow$ Schnorr random. Also, over $RC{A_0}$ the existence of computable randoms is equivalent (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Refining the Taming of the Reverse Mathematics Zoo.Sam Sanders - 2018 - Notre Dame Journal of Formal Logic 59 (4):579-597.
    Reverse mathematics is a program in the foundations of mathematics. It provides an elegant classification in which the majority of theorems of ordinary mathematics fall into only five categories, based on the “big five” logical systems. Recently, a lot of effort has been directed toward finding exceptional theorems, that is, those which fall outside the big five. The so-called reverse mathematics zoo is a collection of such exceptional theorems. It was previously shown that a number of uniform versions of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Algorithmic randomness, reverse mathematics, and the dominated convergence theorem.Jeremy Avigad, Edward T. Dean & Jason Rute - 2012 - Annals of Pure and Applied Logic 163 (12):1854-1864.
    We analyze the pointwise convergence of a sequence of computable elements of L1 in terms of algorithmic randomness. We consider two ways of expressing the dominated convergence theorem and show that, over the base theory RCA0, each is equivalent to the assertion that every Gδ subset of Cantor space with positive measure has an element. This last statement is, in turn, equivalent to weak weak Königʼs lemma relativized to the Turing jump of any set. It is also equivalent to the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The swap of integral and limit in constructive mathematics.Rudolf Taschner - 2010 - Mathematical Logic Quarterly 56 (5):533-540.
    Integration within constructive, especially intuitionistic mathematics in the sense of L. E. J. Brouwer, slightly differs from formal integration theories: Some classical results, especially Lebesgue's dominated convergence theorem, have tobe substituted by appropriate alternatives. Although there exist sophisticated, but rather laborious proposals, e.g. by E. Bishop and D. S. Bridges , the reference to partitions and the Riemann-integral, also with regard to the results obtained by R. Henstock and J. Kurzweil , seems to give a better direction. Especially, convergence theorems (...)
    Download  
     
    Export citation  
     
    Bookmark