Switch to: References

Add citations

You must login to add citations.
  1. Composite Time Concept for Quantum Mechanics and Bio-Psychology.Franz Klaus Jansen - 2018 - Philosophy Study 8 (2):49-66.
    Time has multiple aspects and is difficult to define as one unique entity, which therefore led to multiple interpretations in physics and philosophy. However, if the perception of time is considered as a composite time concept, it can be decomposed into basic invariable components for the perception of progressive and support-fixed time and into secondary components with possible association to unit-defined time or tense. Progressive time corresponds to Bergson’s definition of duration without boundaries, which cannot be divided for measurements. Time (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Physics versus Semantics: A Puzzling Case of the Missing Quantum Theory. [REVIEW]Milan M. Ćirković - 2005 - Foundations of Physics 35 (5):817-838.
    A case for the project of excising of confusion and obfuscation in the contemporary quantum theory initiated and promoted by David Deutsch has been made. It has been argued that at least some theoretical entities which are conventionally labelled as “interpretations” of quantum mechanics are in fact full-blooded physical theories in their own right, and as such are falsifiable, at least in principle. The most pertinent case is the one of the so-called “Many-Worlds Interpretation” (MWI) of Everett and others. This (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Three's a crowd: On causes, entropy and physical eschatology. [REVIEW]Milan M. Ćirković & Vesna Milošević-Zdjelar - 2004 - Foundations of Science 9 (1):1-24.
    Recent discussions of theorigins of the thermodynamical temporal asymmetry (thearrow of time) by Huw Price and others arecritically assessed. This serves as amotivation for consideration of relationshipbetween thermodynamical and cosmologicalcauses. Although the project of clarificationof the thermodynamical explanandum is certainlywelcome, Price excludes another interestingoption, at least as viable as the sort ofAcausal-Particular approach he favors, andarguably more in the spirit of Boltzmannhimself. Thus, the competition of explanatoryprojects includes three horses, not two. Inaddition, it is the Acausal-Particular approachthat could benefit enormously (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Philosophical issues in electromagnetism.Mathias Frisch - 2008 - Philosophy Compass 4 (1):255-270.
    This paper provides a survey of several philosophical issues arising in classical electrodynamics arguing that there is a philosophically rich set of problems in theories of classical physics that have not yet received the attention by philosophers that they deserve. One issue, which is connected to the philosophy of causation, concerns the temporal asymmetry exhibited by radiation fields in the presence of wave sources. Physicists and philosophers disagree on whether this asymmetry reflects a fundamental causal asymmetry or is due to (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (Dis-)solving the puzzle of the arrow of radiation.Mathias Frisch - 2000 - British Journal for the Philosophy of Science 51 (3):381-410.
    I criticize two accounts of the temporal asymmetry of electromagnetic radiation - that of Huw Price, whose account centrally involves a reinterpretation of Wheeler and Feynman's infinite absorber theory, and that of Dieter Zeh. I then offer some reasons for thinking that the purported puzzle of the arrow of radiation does not present a genuine puzzle in need of a solution.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • The Milky Way’s Supermassive Black Hole: How Good a Case Is It?: A Challenge for Astrophysics & Philosophy of Science.Andreas Eckart, Andreas Hüttemann, Claus Kiefer, Silke Britzen, Michal Zajaček, Claus Lämmerzahl, Manfred Stöckler, Monica Valencia-S., Vladimir Karas & Macarena García-Marín - 2017 - Foundations of Physics 47 (5):553-624.
    The compact and, with \ M\, very massive object located at the center of the Milky Way is currently the very best candidate for a supermassive black hole in our immediate vicinity. The strongest evidence for this is provided by measurements of stellar orbits, variable X-ray emission, and strongly variable polarized near-infrared emission from the location of the radio source Sagittarius A* in the middle of the central stellar cluster. Simultaneous near-infrared and X-ray observations of SgrA* have revealed insights into (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Information Loss as a Foundational Principle for the Second Law of Thermodynamics.T. L. Duncan & J. S. Semura - 2007 - Foundations of Physics 37 (12):1767-1773.
    In a previous paper (Duncan, T.L., Semura, J.S. in Entropy 6:21, 2004) we considered the question, “What underlying property of nature is responsible for the second law?” A simple answer can be stated in terms of information: The fundamental loss of information gives rise to the second law. This line of thinking highlights the existence of two independent but coupled sets of laws: Information dynamics and energy dynamics. The distinction helps shed light on certain foundational questions in statistical mechanics. For (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Compact Time and Determinism for Bosons: Foundations. [REVIEW]Donatello Dolce - 2011 - Foundations of Physics 41 (2):178-203.
    Free bosonic fields are investigated at a classical level by imposing their characteristic de Broglie periodicities as constraints. In analogy with finite temperature field theory and with extra-dimensional field theories, this compactification naturally leads to a quantized energy spectrum. As a consequence of the relation between periodicity and energy arising from the de Broglie relation, the compactification must be regarded as dynamical and local. The theory, whose foundamental set-up is presented in this paper, turns out to be consistent with special (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Popper on irreversibility and the arrow of time.Michael Esfeld - unknown
    in Ian Jarvie, Karl Milford and David Miller (eds.): Karl Popper: A centenary assessment, Aldershot: Ashgate 2006, Chapter 45, pp. 57–70.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Open Systems View.Michael E. Cuffaro & Stephan Hartmann - manuscript
    There is a deeply entrenched view in philosophy and physics, the closed systems view, according to which isolated systems are conceived of as fundamental. On this view, when a system is under the influence of its environment this is described in terms of a coupling between it and a separate system which taken together are isolated. We argue against this view, and in favor of the alternative open systems view, for which systems interacting with their environment are conceived of as (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • What is Probability?Simon Saunders - 2004 - Arxiv Preprint Quant-Ph/0412194.
    Probabilities may be subjective or objective; we are concerned with both kinds of probability, and the relationship between them. The fundamental theory of objective probability is quantum mechanics: it is argued that neither Bohr's Copenhagen interpretation, nor the pilot-wave theory, nor stochastic state-reduction theories, give a satisfactory answer to the question of what objective probabilities are in quantum mechanics, or why they should satisfy the Born rule; nor do they give any reason why subjective probabilities should track objective ones. But (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • The Aethereal Universe.Andrew Thomas Holster - manuscript
    Introduction to alternative ontology of mind and physics based on the multi-dimensional model of A Geometric Theory of the Universe (Holster).
    Download  
     
    Export citation  
     
    Bookmark  
  • Concepts of physical directionality of time Part 2 The interpretation of the quantum mechanical time reversal operator.Andrew Thomas Holster - manuscript
    This is Part 2 of a four part paper, intended as an introduction to the key concepts and issues of time directionality for physicists and philosophers. It redresses some fundamental confusions in the subject. These need to be corrected in introductory courses for physics and philosophy of physics students. Here we analyze the quantum mechanical time reversal operator and the reversal of the deterministic Schrodinger equation. It is argued that quantum mechanics is anti-symmetric w.r.t. time reversal in its deterministic laws. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Energy, Entropy and the Environment (How to Increase the First by Decreasing the Second to Save the Third).D. P. Sheehan - 2010 - Journal of Scientific Exploration 22 (4).
    Energy is the lifeblood of civilization, but inexpensive, high energy density sources are rapidly being depleted and their exploitation is severely degrading the environment. This paper explores a radical solution to this energy-environmental dilemma. In the last 10–15 years, the universality of the second law of thermodynamics has fallen into serious theoretical doubt [1–3]. Should it prove experimentally violable, this would open the door to a nearly limitless reservoir of ubiquitous, clean, recyclable energy. If economical, it could precipitate paradigm shifts (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Analyse du paradoxe de l'irréversibilité et proposition d'une conception inter-subjective du Temps. La théorie du Temps quantique.Pierre Uzan - 2000 - Philosophia Scientiae 4 (2):173-187.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Arrow of Time.Ted Dace - 2018 - Cosmos and History 14 (3):321-333.
    The foundation of irreversible, probabilistic time -- the classical time of conscious observation -- is the reversible and deterministic time of the quantum wave function. The tendency in physics is to regard time in the abstract, a mere parameter devoid of inherent direction, implying that a concept of real time begins with irreversibility. In reality time has no need for irreversibility, and every invocation of time implies becoming or flow. Neither symmetry under time reversal, of which Newton was well aware, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Information and Explication.Ted Dace - 2020 - Cosmos and History : The Journal of Natural and Social Philosophy 16 (2):118-141.
    An atom is characterized mathematically as an evolving superposition of possible values of properties and experimentally as an instantaneous phenomenon with a precise value of a measured property. Likewise, an organism is to itself a flux of experience and to an observer a tangible body in a distinct moment. Whereas the implicit atom is the stream of computation represented by the smoothly propagating wave function, the implicit organism is both the species from which the body individuates and the personal mind (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Time in Thermodynamics.Jill North - 2011 - In Criag Callender (ed.), The Oxford Handbook of Philosophy of Time. Oxford University Press. pp. 312--350.
    Or better: time asymmetry in thermodynamics. Better still: time asymmetry in thermodynamic phenomena. “Time in thermodynamics” misleadingly suggests that thermodynamics will tell us about the fundamental nature of time. But we don’t think that thermodynamics is a fundamental theory. It is a theory of macroscopic behavior, often called a “phenomenological science.” And to the extent that physics can tell us about the fundamental features of the world, including such things as the nature of time, we generally think that only fundamental (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • The Necessity of Gibbsian Statistical Mechanics.David Wallace - unknown
    In discussions of the foundations of statistical mechanics, it is widely held that the Gibbsian and Boltzmannian approaches are incompatible but empirically equivalent; the Gibbsian approach may be calculationally preferable but only the Boltzmannian approach is conceptually satisfactory. I argue against both assumptions. Gibbsian statistical mechanics is applicable to a wide variety of problems and systems, such as the calculation of transport coefficients and the statistical mechanics and thermodynamics of mesoscopic systems, in which the Boltzmannian approach is inapplicable. And the (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Autonomy generalised; or, Why doesn’t physics matter more?Katie Robertson - forthcoming - Ergo.
    In what sense are the special sciences autonomous of fundamental physics? Autonomy is an enduring theme in discussions of the relationship between the special sciences and fundamental physics or, more generally, between higher and lower-level facts. Discussion of ‘autonomy’ often fails to recognise that autonomy admits of degrees; consequently, autonomy is either taken to require full independence, or risk relegation to mere apparent autonomy. In addition, the definition of autonomy used by Fodor, the most famous proponent of the autonomy of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The time asymmetry of quantum mechanics and concepts of physical directionality of time Part 1.Andrew Thomas Holster - manuscript
    This is Part 1 of a four part paper, intended to redress some of the most fundamental confusions in the subject of physical time directionality, and represent the concepts accurately. There are widespread fallacies in the subject that need to be corrected in introductory courses for physics students and philosophers. We start in Part 1 by analysing the time reversal symmetry of quantum probability laws. Time reversal symmetry is defined as the property of invariance under the time reversal transformation, T: (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Eschewing Entities: Outlining a Biology Based Form of Structural Realism.Steven French - 2013 - In Vassilios Karakostas & Dennis Dieks (eds.), Epsa11 Perspectives and Foundational Problems in Philosophy of Science. Springer. pp. 371--381.
    Download  
     
    Export citation  
     
    Bookmark  
  • Collapse of the Ontological Gradient.Ted Dace - 2020 - Философия И Космология 24:70-82.
    Because an unmeasured quantum system consists of information — neither tangible existence nor its complete absence — no property can be assigned a definite value, only a range of likely values should it be measured. The instantaneous transition from information to matter upon measurement establishes a gradient between being and not-being. A quantum system enters a determinate state in a particular moment until this moment is past, at which point the system resumes its default state as an evolving superposition of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Geometrodynamics as Functionalism about Time.Henrique Gomes & Jeremy Butterfield - unknown
    We review three broadly geometrodynamical---and in part, Machian or relational---projects, from the perspective of spacetime functionalism. We show how all three are examples of functionalist reduction of the type that was advocated by D. Lewis, and nowadays goes by the label `the Canberra Plan’. The projects are: the recovery of geometrodynamics by Hojman et al. ; the programme of Schuller and collaborators to deduce a metric from the physics of matter fields; the deduction of the ADM Hamiltonian by Gomes and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Time, Temporality, and the Scientific Investigation of Reality.Joaquin Trujillo - 2014 - Meta: Research in Hermeneutics, Phenomenology, and Practical Philosophy 6 (2):445-462.
    This article examines select correspondences between the physics and phenomenology of time that beg elucidation and position phenomenology to contribute to the scientific investigation of reality. Its analysis yields four observations. The inherent tendency of things to change asymmetrically is the basis of time and temporality. Physics calls this tendency the “arrow of time.” Phenomenology calls it “άρχή κινήσεος”. The physics and phenomenology of time posit isomorphic interpretations of reality. They both interpret reality as a unity of time, space, and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Direction of Causation: Ramsey's Ultimate Contingency.Huw Price - 1992 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1992:253 - 267.
    The paper criticizes the attempt to account for the direction of causation in terms of objective statistical asymmetries, such as those of the fork asymmetry. Following Ramsey, I argue that the most plausible way to account for causal asymmetry is to regard it as "put in by hand", that is as a feature that agents project onto the world. Its temporal orientation stems from that of ourselves as agents. The crucial statistical asymmetry is an anthropocentric one, namely that we take (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Time before time - classifications of universes in contemporary cosmology, and how to avoid the antinomy of the beginning and eternity of the world.Ruediger Vaas - unknown
    Did the universe have a beginning or does it exist forever, i.e. is it eternal at least in relation to the past? This fundamental question was a main topic in ancient philosophy of nature and the Middle Ages. Philosophically it was more or less banished then by Immanuel Kant's Critique of Pure Reason. But it used to have and still has its revival in modern physical cosmology both in the controversy between the big bang and steady state models some decades (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Appearing Out of Nowhere: The Emergence of Spacetime in Quantum Gravity.Karen Crowther - 2014 - Dissertation, University of Sydney
    Quantum gravity is understood as a theory that, in some sense, unifies general relativity (GR) and quantum theory, and is supposed to replace GR at extremely small distances (high-energies). It may be that quantum gravity represents the breakdown of spacetime geometry described by GR. The relationship between quantum gravity and spacetime has been deemed ``emergence'', and the aim of this thesis is to investigate and explicate this relation. After finding traditional philosophical accounts of emergence to be inappropriate, I develop a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Boltzmann's h-theorem, its limitations, and the birth of statistical mechanics.Harvey R. Brown & Wayne Myrvold - unknown
    A comparison is made of the traditional Loschmidt and Zermelo objections to Boltzmann's H-theorem, and its simplified variant in the Ehrenfests' 1912 wind-tree model. The little-cited 1896 objection of Zermelo is also analysed. Significant differences between the objections are highlighted, and several old and modern misconceptions concerning both them and the H-theorem are clarified. We give particular emphasis to the radical nature of Poincare's and Zermelo's attack, and the importance of the shift in Boltzmann's thinking in response to the objections (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Time-entanglement between mind and matter.Hans Primas - unknown
    This contribution explores Wolfgang Pauli's idea that mind and matter are complementary aspects of the same reality. We adopt the working hypothesis that there is an undivided timeless primordial reality (the primordial "one world''). Breaking its symmetry, we obtain a contextual description of the holistic reality in terms of two categorically different domains, one tensed and the other tenseless. The tensed domain includes, in addition to tensed time, nonmaterial processes and mental events. The tenseless domain refers to matter and physical (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • An anomaly in space and time and the origin of dynamics.Joan A. Vaccaro - unknown
    The Hamiltonian defines the dynamical properties of the universe. Evidence from particle physics shows that there is a different version of the Hamiltonian for each direction of time. As there is no physical basis for the universe to be asymmetric in time, both versions must operate equally. However, conventional physical theories accommodate only one version of the Hamiltonian and one direction of time. This represents an unexplained anomaly in conventional physics and calls for a reworking of the concepts of time (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Does the quantum mechanical wave function exist?Claus Kiefer - 2019 - Philosophical Problems in Science 66:111-128.
    I address the question whether the wave function in quantum theory exists as a real quantity or not. For this purpose, I discuss the essentials of the quantum formalism and emphasize the central role of the superposition principle. I then explain the measurement problem and discuss the process of decoherence. Finally, I address the special features that the quantization of gravity brings into the game. From all of this I conclude that the wave function really exists, that is, it is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Does time exist in quantum gravity?Claus Kiefer - 2015 - Zagadnienia Filozoficzne W Nauce 59:7-24.
    Time is absolute in standard quantum theory and dynamical in general relativity. The combination of both theories into a theory of quantum gravity leads therefore to a “problem of time”. In my essay, I investigate those consequences for the concept of time that may be drawn without a detailed knowledge of quantum gravity. The only assumptions are the experimentally supported universality of the linear structure of quantum theory and the recovery of general relativity in the classical limit. Among the consequences (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations