Abstract
This paper discusses the logical possibility of testing inconsistent empirical theories. The main challenge for answering this affirmatively is to avoid that the inconsistent consequences of a theory both corroborate it and falsify it. I answer affirmatively by showing that we can define a class of empirical sentences whose truth would force us to abandon such inconsistent theory: the class of its potential rejecters. Despite this, I show that the observational contradictions implied by a theory could only be verified (provided we make some assumptions), but not rejected. From this, it follows that, although inconsistent theories are rejectable, they cannot be rejected qua inconsistent.