L'infinité des nombres premiers : une étude de cas de la pureté des méthodes

Les Etudes Philosophiques 97 (2):193 (2011)
Download Edit this record How to cite View on PhilPapers
Abstract
Une preuve est pure si, en gros, elle ne réfère dans son développement qu’à ce qui est « proche » de, ou « intrinsèque » à l’énoncé à prouver. L’infinité des nombres premiers, un théorème classique de l’arithmétique, est un cas d’étude particulièrement riche pour les recherches philosophiques sur la pureté. Deux preuves différentes de ce résultat sont ici considérées, à savoir la preuve euclidienne classique et une preuve « topologique » plus récente proposée par Furstenberg. D’un point de vue naïf, il semblerait que la première soit pure et la seconde impure. Des objections à cette vue naïve sont ici considérées et réfutées. Concernant la preuve euclidienne, la question relève de la logique, notamment de la définissabilité arithmétique de l’addition en termes de successeur et de divisibilité telle que démontrée par Julia Robinson, tandis qu’en ce qui concerne la preuve topologique, la question relève de la sémantique, notamment pour tout ce qui touche au problème de savoir ce qui est « inclus » dans le contenu d’énoncés particuliers.A proof is pure, roughly, if it draws only on what is « close » or « intrinsic » to the statement being proved. The infinitude of prime numbers, a classical theorem of arithmetic, is a rich case study for philosophical investigation of purity. Two different proofs of this result are considered, namely the classical Euclidean proof and a more recent « topological » proof by Furstenberg. Naively the former would seem to be pure and the latter to be impure. Objections to these naive views are considered and met. In the case of the former the issue rests on logical matters, specifically the arithmetic definability of addition in terms of successor and divisibility shown by Julia Robinson, while in the case of the latter the issue rests on semantic matters, specifically with respect to what is « contained » in the content of particular statements
Keywords
No keywords specified (fix it)
PhilPapers/Archive ID
ARALDN
Upload history
Archival date: 2019-09-19
View other versions
Added to PP index
2013-09-29

Total views
86 ( #35,954 of 51,210 )

Recent downloads (6 months)
30 ( #19,479 of 51,210 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.