Inner-Model Reflection Principles

Studia Logica 108 (3):573-595 (2020)
  Copy   BIBTEX

Abstract

We introduce and consider the inner-model reflection principle, which asserts that whenever a statement \varphi(a) in the first-order language of set theory is true in the set-theoretic universe V, then it is also true in a proper inner model W \subset A. A stronger principle, the ground-model reflection principle, asserts that any such \varphi(a) true in V is also true in some non-trivial ground model of the universe with respect to set forcing. These principles each express a form of width reflection in contrast to the usual height reflection of the Lévy–Montague reflection theorem. They are each equiconsistent with ZFC and indeed \Pi_2-conservative over ZFC, being forceable by class forcing while preserving any desired rank-initial segment of the universe. Furthermore, the inner-model reflection principle is a consequence of the existence of sufficient large cardinals, and lightface formulations of the reflection principles follow from the maximality principle MP and from the inner-model hypothesis IMH. We also consider some questions concerning the expressibility of the principles.

Author Profiles

Analytics

Added to PP
2019-04-20

Downloads
461 (#51,851)

6 months
116 (#42,215)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?