The Applicability of Mathematics to Physical Modality

Synthese 194 (9):3361-3377 (2017)
  Copy   BIBTEX

Abstract

This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure of the physical world. The no-miracles argument is the primary motivation for scientific realism. It is a presupposition of this argument that unobservable entities are explanatory only when they determine the empirical phenomena they explain. I argue that mathematical entities should also be seen as explanatory only when they determine the empirical facts they explain, namely, the modal structure of the physical world. Thus, scientific realism commits us to a metaphysical determination relation between mathematics and physical modality that has not been previously recognized. The requirement to account for the metaphysical dependence of modal physical structure on mathematics limits the class of acceptable solutions to the applicability problem that are available to the scientific realist.

Author's Profile

Nora Berenstain
University of Tennessee, Knoxville

Analytics

Added to PP
2016-02-27

Downloads
1,422 (#3,834)

6 months
83 (#8,751)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?