View topic on PhilPapers for more information
Related categories

25 found
Order:
More results on PhilPapers
  1. added 2019-07-24
    Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - forthcoming - Erkenntnis:1-19.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content to key (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. added 2019-07-05
    Optimal Representations and the Enhanced Indispensability Argument.Manuel Barrantes - 2019 - Synthese 196 (1):247-263.
    The Enhanced Indispensability Argument appeals to the existence of Mathematical Explanations of Physical Phenomena to justify mathematical Platonism, following the principle of Inference to the Best Explanation. In this paper, I examine one example of a MEPP—the explanation of the 13-year and 17-year life cycle of magicicadas—and argue that this case cannot be used defend the EIA. I then generalize my analysis of the cicada case to other MEPPs, and show that these explanations rely on what I will call ‘optimal (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  3. added 2019-06-12
    Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation.Gabriel Târziu - 2018 - Logique Et Analyse 61 (244):457-487.
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. added 2019-06-12
    Can We Have Mathematical Understanding of Physical Phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. added 2019-01-10
    Quine and the Incoherence of the Indispensability Argument.Michael J. Shaffer - 2019 - Logos and Episteme 10 (2):207-213.
    It is an under-appreciated fact that Quine's rejection of the analytic/synthetic distinction, when coupled with some other plausible and related views, implies that there are serious difficulties in demarcating empirical theories from pure mathematical theories within the Quinean framework. This is a serious problem because there seems to be a principled difference between the two disciplines that cannot apparently be captured in the orthodox Quienan framework. For the purpose of simplicity let us call this Quine's problem of demarcation. In this (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. added 2018-08-06
    Clarificando o Suporte do Argumento Melhorado da Indispensabilidade Matemática.Eduardo Castro - 2017 - Argumentos 17 (9):57-71.
    The enhanced mathematical indispensability argument, proposed by Alan Baker (2005), argues that we must commit to mathematical entities, because mathematical entities play an indispensable explanatory role in our best scientific theories. This article clarifies the doctrines that support this argument, namely, the doctrines of naturalism and confirmational holism.
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  7. added 2017-11-28
    What We Talk About When We Talk About Numbers.Richard Pettigrew - manuscript
    In this paper, I describe and motivate a new species of mathematical structuralism, which I call Instrumental Nominalism about Set-Theoretic Structuralism. As the name suggests, this approach takes standard Set-Theoretic Structuralism of the sort championed by Bourbaki and removes its ontological commitments by taking an instrumental nominalist approach to that ontology of the sort described by Joseph Melia and Gideon Rosen. I argue that this avoids all of the problems that plague other versions of structuralism.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. added 2017-10-05
    Rejecting Mathematical Realism While Accepting Interactive Realism.Seungbae Park - 2018 - Analysis and Metaphysics 17:7-21.
    Indispensablists contend that accepting scientific realism while rejecting mathematical realism involves a double standard. I refute this contention by developing an enhanced version of scientific realism, which I call interactive realism. It holds that interactively successful theories are typically approximately true, and that the interactive unobservable entities posited by them are likely to exist. It is immune to the pessimistic induction while mathematical realism is susceptible to it.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. added 2017-03-11
    In Defense of Mathematical Inferentialism.Seungbae Park - 2017 - Analysis and Metaphysics 16:70-83.
    I defend a new position in philosophy of mathematics that I call mathematical inferentialism. It holds that a mathematical sentence can perform the function of facilitating deductive inferences from some concrete sentences to other concrete sentences, that a mathematical sentence is true if and only if all of its concrete consequences are true, that the abstract world does not exist, and that we acquire mathematical knowledge by confirming concrete sentences. Mathematical inferentialism has several advantages over mathematical realism and fictionalism.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. added 2017-01-10
    Dynamical Systems Theory and Explanatory Indispensability.Juha Saatsi - 2017 - Philosophy of Science 84 (5):892-904.
    I examine explanations’ realist commitments in relation to dynamical systems theory. First I rebut an ‘explanatory indispensability argument’ for mathematical realism from the explanatory power of phase spaces (Lyon and Colyvan 2007). Then I critically consider a possible way of strengthening the indispensability argument by reference to attractors in dynamical systems theory. The take-home message is that understanding of the modal character of explanations (in dynamical systems theory) can undermine platonist arguments from explanatory indispensability.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  11. added 2016-02-27
    The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. added 2016-01-08
    Debunking Arguments: Mathematics, Logic, and Modal Security.Justin Clarke-Doane - forthcoming - In Robert Richards and Michael Ruse (ed.), The Cambridge Handbook of Evolutionary Ethics. Cambridge University Press.
    I discuss the structure of genealogical debunking arguments. I argue that they undermine our mathematical beliefs if they undermine our moral beliefs. The contrary appearance stems from a confusion of arithmetic truths with (first-order) logical truths, or from a confusion of reliability with justification. I conclude with a discussion of the cogency of debunking arguments, in light of the above. Their cogency depends on whether information can undermine all of our beliefs of a kind, F, without giving us direct reason (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. added 2015-09-04
    Hilbert's Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. added 2015-08-25
    Indispensability Argument and Set Theory.Karlis Podnieks - 2008 - The Reasoner 2 (11):8--9.
    Most set theorists accept AC, and reject AD, i.e. for them, AC is true in the "world of sets", and AD is false. Applying to set theory the above-mentioned formalistic explanation of the existence of quarks, we could say: if, for a long time in the future, set theorists will continue their believing in AC, then one may think of a unique "world of sets" as existing in the same sense as quarks are believed to exist.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. added 2015-04-06
    Argument and Explanation in Mathematics.Michel Dufour - 2013 - In Dima Mohammed and Marcin Lewiński (ed.), Virtues of Argumentation. Proceedings of the 10th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 22-26 May 2013. pp. pp. 1-14..
    Are there arguments in mathematics? Are there explanations in mathematics? Are there any connections between argument, proof and explanation? Highly controversial answers and arguments are reviewed. The main point is that in the case of a mathematical proof, the pragmatic criterion used to make a distinction between argument and explanation is likely to be insufficient for you may grant the conclusion of a proof but keep on thinking that the proof is not explanatory.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. added 2015-03-24
    On the ‘Indispensable Explanatory Role’ of Mathematics.Juha Saatsi - 2016 - Mind 125 (500):1045-1070.
    The literature on the indispensability argument for mathematical realism often refers to the ‘indispensable explanatory role’ of mathematics. I argue that we should examine the notion of explanatory indispensability from the point of view of specific conceptions of scientific explanation. The reason is that explanatory indispensability in and of itself turns out to be insufficient for justifying the ontological conclusions at stake. To show this I introduce a distinction between different kinds of explanatory roles—some ‘thick’ and ontologically committing, others ‘thin’ (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   13 citations  
  17. added 2014-06-21
    Justification and Explanation in Mathematics and Morality.Justin Clarke-Doane - 2015 - In Russ Shafer-Landau (ed.), Oxford Studies in Metaethics: Volume 1. Oxford University Press.
    In an influential book, Gilbert Harman writes, "In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles [1977, 9 – 10]." What is the epistemological relevance of this contrast, if genuine? In this article, I argue that ethicists and philosophers of mathematics have misunderstood it. They have confused what I will call the justificatory challenge for realism about an (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   15 citations  
  18. added 2014-04-02
    On the Mathematical Representation of Spacetime.Joseph Cosgrove - 2011 - New Yearbook for Phenomenology and Phenomenological Philosophy 11:154-186.
    This essay is a contribution to the historical phenomenology of science, taking as its point of departure Husserl’s later philosophy of science and Jacob Klein’s seminal work on the emergence of the symbolic conception of number in European mathematics during the late sixteenth and seventeenth centuries. Sinceneither Husserl nor Klein applied their ideas to actual theories of modern mathematical physics, this essay attempts to do so through a case study of the conceptof “spacetime.” In §1, I sketch Klein’s account of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  19. added 2014-03-07
    Of Numbers and Electrons.Cian Dorr - 2010 - Proceedings of the Aristotelian Society 110 (2pt2):133-181.
    According to a tradition stemming from Quine and Putnam, we have the same broadly inductive reason for believing in numbers as we have for believing in electrons: certain theories that entail that there are numbers are better, qua explanations of our evidence, than any theories that do not. This paper investigates how modal theories of the form ‘Possibly, the concrete world is just as it in fact is and T’ and ‘Necessarily, if standard mathematics is true and the concrete world (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   11 citations  
  20. added 2014-03-06
    Inference to the Best Explanation and Mathematical Realism.Sorin Ioan Bangu - 2008 - Synthese 160 (1):13-20.
    Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   25 citations  
  21. added 2014-03-06
    Quine, Putnam, and the ‘Quine–Putnam’ Indispensability Argument.David Liggins - 2008 - Erkenntnis 68 (1):113 - 127.
    Much recent discussion in the philosophy of mathematics has concerned the indispensability argument—an argument which aims to establish the existence of abstract mathematical objects through appealing to the role that mathematics plays in empirical science. The indispensability argument is standardly attributed to W. V. Quine and Hilary Putnam. In this paper, I show that this attribution is mistaken. Quine's argument for the existence of abstract mathematical objects differs from the argument which many philosophers of mathematics ascribe to him. Contrary to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   33 citations  
  22. added 2014-01-16
    Pythagorean Powers or a Challenge to Platonism.Colin Cheyne & Charles R. Pigden - 1996 - Australasian Journal of Philosophy 74 (4):639 – 645.
    The Quine/Putnam indispensability argument is regarded by many as the chief argument for the existence of platonic objects. We argue that this argument cannot establish what its proponents intend. The form of our argument is simple. Suppose indispensability to science is the only good reason for believing in the existence of platonic objects. Either the dispensability of mathematical objects to science can be demonstrated and, hence, there is no good reason for believing in the existence of platonic objects, or their (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  23. added 2013-01-18
    Numbers Without Science.Russell Marcus - 2007 - Dissertation, The Graduate School and University Center of the City University of New York
    Numbers without Science opposes the Quine-Putnam indispensability argument, seeking to undermine the argument and reduce its profound influence. Philosophers rely on indispensability to justify mathematical knowledge using only empiricist epistemology. I argue that we need an independent account of our knowledge of mathematics. The indispensability argument, in broad form, consists of two premises. The major premise alleges that we are committed to mathematical objects if science requires them. The minor premise alleges that science in fact requires mathematical objects. The most (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  24. added 2012-05-15
    Indispensability Without Platonism.Anne Newstead & James Franklin - 2012 - In Alexander Bird, Brian Ellis & Howard Sankey (eds.), Properties, Powers, and Structures: Issues in the Metaphysics of Realism. New York, USA: Routledge. pp. 81-97.
    According to Quine’s indispensability argument, we ought to believe in just those mathematical entities that we quantify over in our best scientific theories. Quine’s criterion of ontological commitment is part of the standard indispensability argument. However, we suggest that a new indispensability argument can be run using Armstrong’s criterion of ontological commitment rather than Quine’s. According to Armstrong’s criterion, ‘to be is to be a truthmaker (or part of one)’. We supplement this criterion with our own brand of metaphysics, 'Aristotelian (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  25. added 2011-08-25
    Weaseling and the Content of Science.David Liggins - 2012 - Mind 121 (484):997-1005.
    I defend Joseph Melia’s nominalist account of mathematics from an objection raised by Mark Colyvan.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations