Contents
43 found
Order:
  1. Platonism and Intra-mathematical Explanation.Sam Baron - forthcoming - Philosophical Quarterly.
    I introduce an argument for Platonism based on intra-mathematical explanation: the explanation of one mathematical fact by another. The argument is important for two reasons. First, if the argument succeeds then it provides a basis for Platonism that does not proceed via standard indispensability considerations. Second, if the argument fails it can only do so for one of three reasons: either because there are no intra-mathematical explanations, or because not all explanations are backed by dependence relations, or because some form (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Is Fourier Analysis Conservative over Physical Theory?Nicholas Danne - forthcoming - Logique Et Analyse.
    Hartry Field argues that conservative rather than true mathematical sentences facilitate deductions in nominalist (i.e., abstracta-free) science without prejudging its empirical outcomes. In this paper, I identify one branch of mathematics as nonconservative, for its indispensable role in enabling nominalist language about a fundamental scientific property, in a fictional scientific community. The fundamental property is electromagnetic reflectance, and the mathematics is Fourier analysis, which renders reflectance ascribable, and nominalist reflectance claims utterable, by this community. Using a recent characterization of conservativeness (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Applied Mathematics without Numbers.Jack Himelright - 2023 - Philosophia Mathematica 31 (2):147-175.
    In this paper, I develop a "safety result" for applied mathematics. I show that whenever a theory in natural science entails some non-mathematical conclusion via an application of mathematics, there is a counterpart theory that carries no commitment to mathematical objects, entails the same conclusion, and the claims of which are true if the claims of the original theory are "correct": roughly, true given the assumption that mathematical objects exist. The framework used for proving the safety result has some advantages (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. Fishbones, Wheels, Eyes, and Butterflies: Heuristic Structural Reasoning in the Search for Solutions to the Navier-Stokes Equations.Lydia Patton - 2023 - In Lydia Patton & Erik Curiel (eds.), Working Toward Solutions in Fluid Dynamics and Astrophysics: What the Equations Don’t Say. Springer Verlag. pp. 57-78.
    Arguments for the effectiveness, and even the indispensability, of mathematics in scientific explanation rely on the claim that mathematics is an effective or even a necessary component in successful scientific predictions and explanations. Well-known accounts of successful mathematical explanation in physical science appeals to scientists’ ability to solve equations directly in key domains. But there are spectacular physical theories, including general relativity and fluid dynamics, in which the equations of the theory cannot be solved directly in target domains, and yet (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  5. Safety first: making property talk safe for nominalists.Jack Himelright - 2022 - Synthese 200 (3):1-26.
    Nominalists are confronted with a grave difficulty: if abstract objects do not exist, what explains the success of theories that invoke them? In this paper, I make headway on this problem. I develop a formal language in which certain platonistic claims about properties and certain nominalistic claims can be expressed, develop a formal language in which only certain nominalistic claims can be expressed, describe a function mapping sentences of the first language to sentences of the second language, and prove some (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. Platonic Relations and Mathematical Explanations.Robert Knowles - 2021 - Philosophical Quarterly 71 (3):623-644.
    Some scientific explanations appear to turn on pure mathematical claims. The enhanced indispensability argument appeals to these ‘mathematical explanations’ in support of mathematical platonism. I argue that the success of this argument rests on the claim that mathematical explanations locate pure mathematical facts on which their physical explananda depend, and that any account of mathematical explanation that supports this claim fails to provide an adequate understanding of mathematical explanation.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  7. What are empirical consequences? On dispensability and composite objects.Alex LeBrun - 2021 - Synthese 199 (5-6):13201-13223.
    Philosophers sometimes give arguments that presuppose the following principle: two theories can fail to be empirically equivalent on the sole basis that they present different “thick” metaphysical pictures of the world. Recently, a version of this principle has been invoked to respond to the argument that composite objects are dispensable to our best scientific theories. This response claims that our empirical evidence distinguishes between ordinary and composite-free theories, and it empirically favors the ordinary ones. In this paper, I ask whether (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  8. Mathematics and Explanatory Generality: Nothing but Cognitive Salience.Juha Saatsi & Robert Knowles - 2021 - Erkenntnis 86 (5):1119-1137.
    We demonstrate how real progress can be made in the debate surrounding the enhanced indispensability argument. Drawing on a counterfactual theory of explanation, well-motivated independently of the debate, we provide a novel analysis of ‘explanatory generality’ and how mathematics is involved in its procurement. On our analysis, mathematics’ sole explanatory contribution to the procurement of explanatory generality is to make counterfactual information about physical dependencies easier to grasp and reason with for creatures like us. This gives precise content to key (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   10 citations  
  9. Mathematical application and the no confirmation thesis.Kenneth Boyce - 2020 - Analysis 80 (1):11-20.
    Some proponents of the indispensability argument for mathematical realism maintain that the empirical evidence that confirms our best scientific theories and explanations also confirms their pure mathematical components. I show that the falsity of this view follows from three highly plausible theses, two of which concern the nature of mathematical application and the other the nature of empirical confirmation. The first is that the background mathematical theories suitable for use in science are conservative in the sense outlined by Hartry Field. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. Mathematical surrealism as an alternative to easy-road fictionalism.Kenneth Boyce - 2020 - Philosophical Studies 177 (10):2815-2835.
    Easy-road mathematical fictionalists grant for the sake of argument that quantification over mathematical entities is indispensable to some of our best scientific theories and explanations. Even so they maintain we can accept those theories and explanations, without believing their mathematical components, provided we believe the concrete world is intrinsically as it needs to be for those components to be true. Those I refer to as “mathematical surrealists” by contrast appeal to facts about the intrinsic character of the concrete world, not (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. Representational indispensability and ontological commitment.John Heron - 2020 - Thought: A Journal of Philosophy 9 (2):105-114.
    Recent debates about mathematical ontology are guided by the view that Platonism's prospects depend on mathematics' explanatory role in science. If mathematics plays an explanatory role, and in the right kind of way, this carries ontological commitment to mathematical objects. Conversely, the assumption goes, if mathematics merely plays a representational role then our world-oriented uses of mathematics fail to commit us to mathematical objects. I argue that it is a mistake to think that mathematical representation is necessarily ontologically innocent and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. Optimal representations and the Enhanced Indispensability Argument.Manuel Barrantes - 2019 - Synthese 196 (1):247-263.
    The Enhanced Indispensability Argument appeals to the existence of Mathematical Explanations of Physical Phenomena to justify mathematical Platonism, following the principle of Inference to the Best Explanation. In this paper, I examine one example of a MEPP—the explanation of the 13-year and 17-year life cycle of magicicadas—and argue that this case cannot be used defend the EIA. I then generalize my analysis of the cicada case to other MEPPs, and show that these explanations rely on what I will call ‘optimal (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  13. The Enhanced Indispensability Argument, the circularity problem, and the interpretability strategy.Jan Heylen & Lars Arthur Tump - 2019 - Synthese 198 (4):3033-3045.
    Within the context of the Quine–Putnam indispensability argument, one discussion about the status of mathematics is concerned with the ‘Enhanced Indispensability Argument’, which makes explicit in what way mathematics is supposed to be indispensable in science, namely explanatory. If there are genuine mathematical explanations of empirical phenomena, an argument for mathematical platonism could be extracted by using inference to the best explanation. The best explanation of the primeness of the life cycles of Periodical Cicadas is genuinely mathematical, according to Baker (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  14. Quine and the Incoherence of the Indispensability Argument.Michael J. Shaffer - 2019 - Logos and Episteme 10 (2):207-213.
    It is an under-appreciated fact that Quine's rejection of the analytic/synthetic distinction, when coupled with some other plausible and related views, implies that there are serious difficulties in demarcating empirical theories from pure mathematical theories within the Quinean framework. This is a serious problem because there seems to be a principled difference between the two disciplines that cannot apparently be captured in the orthodox Quienan framework. For the purpose of simplicity let us call this Quine's problem of demarcation. In this (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. Why inference to the best explanation doesn’t secure empirical grounds for mathematical platonism.Kenneth Boyce - 2018 - Synthese 198 (1):1-13.
    Proponents of the explanatory indispensability argument for mathematical platonism maintain that claims about mathematical entities play an essential explanatory role in some of our best scientific explanations. They infer that the existence of mathematical entities is supported by way of inference to the best explanation from empirical phenomena and therefore that there are the same sort of empirical grounds for believing in mathematical entities as there are for believing in concrete unobservables such as quarks. I object that this inference depends (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  16. Rejecting Mathematical Realism while Accepting Interactive Realism.Seungbae Park - 2018 - Analysis and Metaphysics 17:7-21.
    Indispensablists contend that accepting scientific realism while rejecting mathematical realism involves a double standard. I refute this contention by developing an enhanced version of scientific realism, which I call interactive realism. It holds that interactively successful theories are typically approximately true, and that the interactive unobservable entities posited by them are likely to exist. It is immune to the pessimistic induction while mathematical realism is susceptible to it.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. What we talk about when we talk about numbers.Richard Pettigrew - 2018 - Annals of Pure and Applied Logic 169 (12):1437-1456.
    In this paper, I describe and motivate a new species of mathematical structuralism, which I call Instrumental Nominalism about Set-Theoretic Structuralism. As the name suggests, this approach takes standard Set-Theoretic Structuralism of the sort championed by Bourbaki and removes its ontological commitments by taking an instrumental nominalist approach to that ontology of the sort described by Joseph Melia and Gideon Rosen. I argue that this avoids all of the problems that plague other versions of structuralism.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  18. Importance and Explanatory Relevance: The Case of Mathematical Explanations.Gabriel Târziu - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):393-412.
    A way to argue that something plays an explanatory role in science is by linking explanatory relevance with importance in the context of an explanation. The idea is deceptively simple: a part of an explanation is an explanatorily relevant part of that explanation if removing it affects the explanation either by destroying it or by diminishing its explanatory power, i.e. an important part is an explanatorily relevant part. This can be very useful in many ontological debates. My aim in this (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation.Gabriel Târziu - 2018 - Logique Et Analyse 61 (244):457-487.
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  20. Can we have mathematical understanding of physical phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. The Applicability of Mathematics to Physical Modality.Nora Berenstain - 2017 - Synthese 194 (9):3361-3377.
    This paper argues that scientific realism commits us to a metaphysical determination relation between the mathematical entities that are indispensible to scientific explanation and the modal structure of the empirical phenomena those entities explain. The argument presupposes that scientific realism commits us to the indispensability argument. The viewpresented here is that the indispensability of mathematics commits us not only to the existence of mathematical structures and entities but to a metaphysical determination relation between those entities and the modal structure of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  22. Clarificando o Suporte do Argumento Melhorado da Indispensabilidade Matemática.Eduardo Castro - 2017 - Argumentos 17 (9):57-71.
    The enhanced mathematical indispensability argument, proposed by Alan Baker (2005), argues that we must commit to mathematical entities, because mathematical entities play an indispensable explanatory role in our best scientific theories. This article clarifies the doctrines that support this argument, namely, the doctrines of naturalism and confirmational holism.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  23. Debunking Arguments: Mathematics, Logic, and Modal Security.Justin Clarke-Doane - 2017 - In Michael Ruse & Robert J. Richards (eds.), The Cambridge Handbook of Evolutionary Ethics. New York: Cambridge University Press.
    I discuss the structure of genealogical debunking arguments. I argue that they undermine our mathematical beliefs if they undermine our moral beliefs. The contrary appearance stems from a confusion of arithmetic truths with (first-order) logical truths, or from a confusion of reliability with justification. I conclude with a discussion of the cogency of debunking arguments, in light of the above. Their cogency depends on whether information can undermine all of our beliefs of a kind, F, without giving us direct reason (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  24. Autonomy Platonism and the Indispensability Argument. By Russell Marcus. Lanham, Md.: Lexington Books, 2015. Pp. xii + 247. [REVIEW]Nicholas Danne - 2017 - Metaphilosophy 48 (4):591-594.
    Comprehensive resource for indispensability research.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. In Defense of Mathematical Inferentialism.Seungbae Park - 2017 - Analysis and Metaphysics 16:70-83.
    I defend a new position in philosophy of mathematics that I call mathematical inferentialism. It holds that a mathematical sentence can perform the function of facilitating deductive inferences from some concrete sentences to other concrete sentences, that a mathematical sentence is true if and only if all of its concrete consequences are true, that the abstract world does not exist, and that we acquire mathematical knowledge by confirming concrete sentences. Mathematical inferentialism has several advantages over mathematical realism and fictionalism.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  26. Dynamical Systems Theory and Explanatory Indispensability.Juha Saatsi - 2017 - Philosophy of Science 84 (5):892-904.
    I examine explanations’ realist commitments in relation to dynamical systems theory. First I rebut an ‘explanatory indispensability argument’ for mathematical realism from the explanatory power of phase spaces (Lyon and Colyvan 2007). Then I critically consider a possible way of strengthening the indispensability argument by reference to attractors in dynamical systems theory. The take-home message is that understanding of the modal character of explanations (in dynamical systems theory) can undermine platonist arguments from explanatory indispensability.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  27. The Current Epistemic Status of the Indispensability Arguments in the Philosophy of Science.Catalin Barboianu - 2016 - Analele Universitatii Din Craiova 36 (2):108-132.
    The predisposition of the Indispensability Argument to objections, rephrasing and versions associated with the various views in philosophy of mathematics grants it a special status of a “blueprint” type rather than a debatable theme in the philosophy of science. From this point of view, it follows that the Argument has more an epistemic character than ontological.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  28. On the ‘Indispensable Explanatory Role’ of Mathematics.Juha Saatsi - 2016 - Mind 125 (500):1045-1070.
    The literature on the indispensability argument for mathematical realism often refers to the ‘indispensable explanatory role’ of mathematics. I argue that we should examine the notion of explanatory indispensability from the point of view of specific conceptions of scientific explanation. The reason is that explanatory indispensability in and of itself turns out to be insufficient for justifying the ontological conclusions at stake. To show this I introduce a distinction between different kinds of explanatory roles—some ‘thick’ and ontologically committing, others ‘thin’ (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   29 citations  
  29. Argument and explanation in mathematics.Michel Dufour - 2013 - In Dima Mohammed and Marcin Lewiński (ed.), Virtues of Argumentation. Proceedings of the 10th International Conference of the Ontario Society for the Study of Argumentation (OSSA), 22-26 May 2013. pp. pp. 1-14..
    Are there arguments in mathematics? Are there explanations in mathematics? Are there any connections between argument, proof and explanation? Highly controversial answers and arguments are reviewed. The main point is that in the case of a mathematical proof, the pragmatic criterion used to make a distinction between argument and explanation is likely to be insufficient for you may grant the conclusion of a proof but keep on thinking that the proof is not explanatory.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. Weaseling and the Content of Science.David Liggins - 2012 - Mind 121 (484):997-1005.
    I defend Joseph Melia’s nominalist account of mathematics from an objection raised by Mark Colyvan.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   16 citations  
  31. On the Mathematical Representation of Spacetime: A Case Study in Historical–Phenomenological Desedimentation.Joseph Cosgrove - 2011 - New Yearbook for Phenomenology and Phenomenological Philosophy 11:154-186.
    This essay is a contribution to the historical phenomenology of science, taking as its point of departure Husserl’s later philosophy of science and Jacob Klein’s seminal work on the emergence of the symbolic conception of number in European mathematics during the late sixteenth and seventeenth centuries. Sinceneither Husserl nor Klein applied their ideas to actual theories of modern mathematical physics, this essay attempts to do so through a case study of the conceptof “spacetime.” In §1, I sketch Klein’s account of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  32. Indispensability Without Platonism.Anne Newstead & James Franklin - 2011 - In Alexander Bird, Brian David Ellis & Howard Sankey (eds.), Properties, Powers and Structures: Issues in the Metaphysics of Realism. New York: Routledge. pp. 81-97.
    According to Quine’s indispensability argument, we ought to believe in just those mathematical entities that we quantify over in our best scientific theories. Quine’s criterion of ontological commitment is part of the standard indispensability argument. However, we suggest that a new indispensability argument can be run using Armstrong’s criterion of ontological commitment rather than Quine’s. According to Armstrong’s criterion, ‘to be is to be a truthmaker (or part of one)’. We supplement this criterion with our own brand of metaphysics, 'Aristotelian (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  33. Of Numbers and Electrons.Cian Dorr - 2010 - Proceedings of the Aristotelian Society 110 (2pt2):133-181.
    According to a tradition stemming from Quine and Putnam, we have the same broadly inductive reason for believing in numbers as we have for believing in electrons: certain theories that entail that there are numbers are better, qua explanations of our evidence, than any theories that do not. This paper investigates how modal theories of the form ‘Possibly, the concrete world is just as it in fact is and T’ and ‘Necessarily, if standard mathematics is true and the concrete world (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   23 citations  
  34. Structuralism, Fictionalism, and Applied Mathematics.Mary Leng - 2009 - In C. Glymour, D. Westerstahl & W. Wang (eds.), Logic, Methodology and Philosophy of Science. Proceedings of the 13th International Congress. King’s College. pp. 377-389.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  35. Inference to the best explanation and mathematical realism.Sorin Ioan Bangu - 2008 - Synthese 160 (1):13-20.
    Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   53 citations  
  36. Quine, Putnam, and the ‘Quine–Putnam’ Indispensability Argument.David Liggins - 2008 - Erkenntnis 68 (1):113 - 127.
    Much recent discussion in the philosophy of mathematics has concerned the indispensability argument—an argument which aims to establish the existence of abstract mathematical objects through appealing to the role that mathematics plays in empirical science. The indispensability argument is standardly attributed to W. V. Quine and Hilary Putnam. In this paper, I show that this attribution is mistaken. Quine's argument for the existence of abstract mathematical objects differs from the argument which many philosophers of mathematics ascribe to him. Contrary to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   40 citations  
  37. Indispensability Argument and Set Theory.Karlis Podnieks - 2008 - The Reasoner 2 (11):8--9.
    Most set theorists accept AC, and reject AD, i.e. for them, AC is true in the "world of sets", and AD is false. Applying to set theory the above-mentioned formalistic explanation of the existence of quarks, we could say: if, for a long time in the future, set theorists will continue their believing in AC, then one may think of a unique "world of sets" as existing in the same sense as quarks are believed to exist.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  38. Numbers without Science.Russell Marcus - 2007 - Dissertation, The Graduate School and University Center of the City University of New York
    Numbers without Science opposes the Quine-Putnam indispensability argument, seeking to undermine the argument and reduce its profound influence. Philosophers rely on indispensability to justify mathematical knowledge using only empiricist epistemology. I argue that we need an independent account of our knowledge of mathematics. The indispensability argument, in broad form, consists of two premises. The major premise alleges that we are committed to mathematical objects if science requires them. The minor premise alleges that science in fact requires mathematical objects. The most (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  39. (1 other version)Justification and Explanation in Mathematics and Morality.Justin Clarke-Doane - 2006 - In Russ Shafer-Landau (ed.), Oxford Studies in Metaethics: Volume 1. Clarendon Press.
    In an influential book, Gilbert Harman writes, "In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles [1977, 9 – 10]." What is the epistemological relevance of this contrast, if genuine? In this article, I argue that ethicists and philosophers of mathematics have misunderstood it. They have confused what I will call the justificatory challenge for realism about an (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   16 citations  
  40. (1 other version)Justification and Explanation in Mathematics and Morality.Justin Clarke-Doane - 2006 - Oxford Studies in Metaethics 10.
    In his influential book, The Nature of Morality, Gilbert Harman writes: “In explaining the observations that support a physical theory, scientists typically appeal to mathematical principles. On the other hand, one never seems to need to appeal in this way to moral principles.” What is the epistemological relevance of this contrast, if genuine? This chapter argues that ethicists and philosophers of mathematics have misunderstood it. They have confused what the chapter calls the justificatory challenge for realism about an area, D—the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   52 citations  
  41. Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  42. (1 other version)Pythagorean powers or a challenge to platonism.Colin Cheyne & Charles R. Pigden - 1996 - Australasian Journal of Philosophy 74 (4):639 – 645.
    The Quine/Putnam indispensability argument is regarded by many as the chief argument for the existence of platonic objects. We argue that this argument cannot establish what its proponents intend. The form of our argument is simple. Suppose indispensability to science is the only good reason for believing in the existence of platonic objects. Either the dispensability of mathematical objects to science can be demonstrated and, hence, there is no good reason for believing in the existence of platonic objects, or their (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   12 citations  
  43. Problems with the recent ontological debate in the philosophy of mathematics.Gabriel Târziu -
    What is the role of mathematics in scientific explanations? Does it/can it play an explanatory part? This question is at the core of the recent ontological debate in the philosophy of mathematics. My aim in this paper is to argue that the two main approaches to this problem found in recent literature (i.e. the top-down and the bottom-up approaches) are both deeply problematic. This has an important implication for the dispute over the existence of mathematical entities: to make progress possible (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark