Abstract
Hartry Field argues that conservative rather than true mathematical sentences facilitate deductions in nominalist (i.e., abstracta-free) science without prejudging its empirical outcomes. In this paper, I identify one branch of mathematics as nonconservative, for its indispensable role in enabling nominalist language about a fundamental scientific property, in a fictional scientific community. The fundamental property is electromagnetic reflectance, and the mathematics is Fourier analysis, which renders reflectance ascribable, and nominalist reflectance claims utterable, by this community. Using a recent characterization of conservativeness by Kenneth Boyce, I argue that infinitudes can be rendered inherently mathematical and non-nominalizable in the fictional community, and that rendering infinitudes inherently mathematical for all real communities would yield a convincing counterexample to Fieldian conservativeness.