Contents
41 found
Order:
  1. Nominalism and Immutability.Daniel Berntson - manuscript
    Can we do science without numbers? How much contingency is there? These seemingly unrelated questions--one in the philosophy of math and science and the other in metaphysics--share an unexpectedly close connection. For as it turns out, a radical answer to the second leads to a breakthrough on the first. The radical answer is new view about modality called compossible immutabilism. The breakthrough is a new strategy for doing science without numbers. One of the chief benefits of the new strategy is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. Reality Realism.Sean M. Carroll - manuscript
    In Morality & Mathematics, Justin Clarke-Doane argues that it is hard to imagine being "a realist about, for example, the standard model of particle physics, but not about mathematics." I try to explain how that seems very possible from the perspective of a physicist. What is real is the physical world; mathematics starts from descriptions of the natural world and extrapolates from there, but that extrapolation does not imply any independent reality. -/- Submitted to an Analysis Reviews symposium on Clarke-Doane's (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. An Intrinsic Theory of Quantum Mechanics: Progress in Field's Nominalistic Program, Part I.Eddy Keming Chen - manuscript
    In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science Without Numbers (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  4. A Sketch of a Sirenia: Meros Theory.Dan Kurth - manuscript
    This sketch of a perhaps future 'Elementary Theory of the Category of Mereological Sums (including Mereological Wholes and Parts)' relates to my previous papers "The Topos of Emergence" and "Intelligible Gunk". I assert that for successfully categorizing Mereology one has to start with a specific setting of gunk. In this paper we will give a sketch of a categorically version of particular mereological structures. I.e. we will follow the example of F.W.Lawvere’s “An elementary theory of the category of sets” -/- (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Names and Objects.Dan Kurth - manuscript
    In this paper I try to fortify the nominalistic objectology (cf. Meinong's 'Gegenstandstheorie') with essentialist means. This also is intended as a preparation for introducing Information Monism.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  6. Platonism and Intra-mathematical Explanation.Sam Baron - forthcoming - Philosophical Quarterly.
    I introduce an argument for Platonism based on intra-mathematical explanation: the explanation of one mathematical fact by another. The argument is important for two reasons. First, if the argument succeeds then it provides a basis for Platonism that does not proceed via standard indispensability considerations. Second, if the argument fails it can only do so for one of three reasons: either because there are no intra-mathematical explanations, or because not all explanations are backed by dependence relations, or because some form (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. Why Can’t There Be Numbers?David Builes - forthcoming - The Philosophical Quarterly.
    Platonists affirm the existence of abstract mathematical objects, and Nominalists deny the existence of abstract mathematical objects. While there are standard arguments in favor of Nominalism, these arguments fail to account for the necessity of Nominalism. Furthermore, these arguments do nothing to explain why Nominalism is true. They only point to certain theoretical vices that might befall the Platonist. The goal of this paper is to formulate and defend a simple, valid argument for the necessity of Nominalism that seeks to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  8. Is Fourier Analysis Conservative over Physical Theory?Nicholas Danne - forthcoming - Logique Et Analyse.
    Hartry Field argues that conservative rather than true mathematical sentences facilitate deductions in nominalist (i.e., abstracta-free) science without prejudging its empirical outcomes. In this paper, I identify one branch of mathematics as nonconservative, for its indispensable role in enabling nominalist language about a fundamental scientific property, in a fictional scientific community. The fundamental property is electromagnetic reflectance, and the mathematics is Fourier analysis, which renders reflectance ascribable, and nominalist reflectance claims utterable, by this community. Using a recent characterization of conservativeness (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. Individuals, Existence, and Existential Commitment in Visual Reasoning.Jens Lemanski - 2024 - Open Philosophy 7 (1):1-25.
    This article examines the evolution of the concept of existence in modern visual representation and reasoning, highlighting important milestones. In the late eighteenth century, during the so-called golden age of visual reasoning, nominalism reigned supreme and there was limited scope for existential import or individuals in logic diagrams. By the late nineteenth century, a form of realism had taken hold, whose existential commitments continue to dominate many areas in logic and visual reasoning to this day. Physical, metaphysical, epistemological, and linguistic (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. A Lewisian Argument Against Platonism, or Why Theses About Abstract Objects Are Unintelligible.Jack Himelright - 2023 - Erkenntnis 88 (7):3037–3057.
    In this paper, I argue that all expressions for abstract objects are meaningless. My argument closely follows David Lewis’ argument against the intelligibility of certain theories of possible worlds, but modifies it in order to yield a general conclusion about language pertaining to abstract objects. If my Lewisian argument is sound, not only can we not know that abstract objects exist, we cannot even refer to or think about them. However, while the Lewisian argument strongly motivates nominalism, it also undermines (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  11. Applied Mathematics without Numbers.Jack Himelright - 2023 - Philosophia Mathematica 31 (2):147-175.
    In this paper, I develop a "safety result" for applied mathematics. I show that whenever a theory in natural science entails some non-mathematical conclusion via an application of mathematics, there is a counterpart theory that carries no commitment to mathematical objects, entails the same conclusion, and the claims of which are true if the claims of the original theory are "correct": roughly, true given the assumption that mathematical objects exist. The framework used for proving the safety result has some advantages (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Objectivity in Mathematics, Without Mathematical Objects†.Markus Pantsar - 2021 - Philosophia Mathematica 29 (3):318-352.
    I identify two reasons for believing in the objectivity of mathematical knowledge: apparent objectivity and applications in science. Focusing on arithmetic, I analyze platonism and cognitive nativism in terms of explaining these two reasons. After establishing that both theories run into difficulties, I present an alternative epistemological account that combines the theoretical frameworks of enculturation and cumulative cultural evolution. I show that this account can explain why arithmetical knowledge appears to be objective and has scientific applications. Finally, I will argue (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  13. Mathematical anti-realism and explanatory structure.Bruno Whittle - 2021 - Synthese 199 (3-4):6203-6217.
    Plausibly, mathematical claims are true, but the fundamental furniture of the world does not include mathematical objects. This can be made sense of by providing mathematical claims with paraphrases, which make clear how the truth of such claims does not require the fundamental existence of mathematical objects. This paper explores the consequences of this type of position for explanatory structure. There is an apparently straightforward relationship between this sort of structure, and the logical sort: i.e. logically complex claims are explained (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. Mathematical surrealism as an alternative to easy-road fictionalism.Kenneth Boyce - 2020 - Philosophical Studies 177 (10):2815-2835.
    Easy-road mathematical fictionalists grant for the sake of argument that quantification over mathematical entities is indispensable to some of our best scientific theories and explanations. Even so they maintain we can accept those theories and explanations, without believing their mathematical components, provided we believe the concrete world is intrinsically as it needs to be for those components to be true. Those I refer to as “mathematical surrealists” by contrast appeal to facts about the intrinsic character of the concrete world, not (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  15. The Idea of Continuity as Mathematical-Philosophical Invariant.Eldar Amirov - 2019 - Metafizika 2 (4):87-100.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   19 citations  
  17. Optimal representations and the Enhanced Indispensability Argument.Manuel Barrantes - 2019 - Synthese 196 (1):247-263.
    The Enhanced Indispensability Argument appeals to the existence of Mathematical Explanations of Physical Phenomena to justify mathematical Platonism, following the principle of Inference to the Best Explanation. In this paper, I examine one example of a MEPP—the explanation of the 13-year and 17-year life cycle of magicicadas—and argue that this case cannot be used defend the EIA. I then generalize my analysis of the cicada case to other MEPPs, and show that these explanations rely on what I will call ‘optimal (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  18. Essays on the Metaphysics of Quantum Mechanics.Eddy Keming Chen - 2019 - Dissertation, Rutgers University, New Brunswick
    What is the proper metaphysics of quantum mechanics? In this dissertation, I approach the question from three different but related angles. First, I suggest that the quantum state can be understood intrinsically as relations holding among regions in ordinary space-time, from which we can recover the wave function uniquely up to an equivalence class (by representation and uniqueness theorems). The intrinsic account eliminates certain conventional elements (e.g. overall phase) in the representation of the quantum state. It also dispenses with first-order (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. The Enhanced Indispensability Argument, the circularity problem, and the interpretability strategy.Jan Heylen & Lars Arthur Tump - 2019 - Synthese 198 (4):3033-3045.
    Within the context of the Quine–Putnam indispensability argument, one discussion about the status of mathematics is concerned with the ‘Enhanced Indispensability Argument’, which makes explicit in what way mathematics is supposed to be indispensable in science, namely explanatory. If there are genuine mathematical explanations of empirical phenomena, an argument for mathematical platonism could be extracted by using inference to the best explanation. The best explanation of the primeness of the life cycles of Periodical Cicadas is genuinely mathematical, according to Baker (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  20. Deflationary Nominalism and Puzzle Avoidance.David Mark Kovacs - 2019 - Philosophia Mathematica 27 (1):88-104.
    In a series of works, Jody Azzouni has defended deflationary nominalism, the view that certain sentences quantifying over mathematical objects are literally true, although such objects do not exist. One alleged attraction of this view is that it avoids various philosophical puzzles about mathematical objects. I argue that this thought is misguided. I first develop an ontologically neutral counterpart of Field’s reliability challenge and argue that deflationary nominalism offers no distinctive answer to it. I then show how this reasoning generalizes (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Can Mathematical Objects Be Causally Efficacious?Seungbae Park - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (3):247–255.
    Callard (2007) argues that it is metaphysically possible that a mathematical object, although abstract, causally affects the brain. I raise the following objections. First, a successful defence of mathematical realism requires not merely the metaphysical possibility but rather the actuality that a mathematical object affects the brain. Second, mathematical realists need to confront a set of three pertinent issues: why a mathematical object does not affect other concrete objects and other mathematical objects, what counts as a mathematical object, and how (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  22. Truth and Existence.Jan Heylen & Leon Horsten - 2017 - Thought: A Journal of Philosophy 6 (1):106-114.
    Halbach has argued that Tarski biconditionals are not ontologically conservative over classical logic, but his argument is undermined by the fact that he cannot include a theory of arithmetic, which functions as a theory of syntax. This article is an improvement on Halbach's argument. By adding the Tarski biconditionals to inclusive negative free logic and the universal closure of minimal arithmetic, which is by itself an ontologically neutral combination, one can prove that at least one thing exists. The result can (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  23. A Generic Russellian Elimination of Abstract Objects.Kevin C. Klement - 2017 - Philosophia Mathematica 25 (1):91-115.
    In this paper I explore a position on which it is possible to eliminate the need for postulating abstract objects through abstraction principles by treating terms for abstracta as ‘incomplete symbols’, using Russell's no-classes theory as a template from which to generalize. I defend views of this stripe against objections, most notably Richard Heck's charge that syntactic forms of nominalism cannot correctly deal with non-first-orderizable quantifcation over apparent abstracta. I further discuss how number theory may be developed in a system (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  24. Number words as number names.Friederike Moltmann - 2017 - Linguistics and Philosophy 40 (4):331-345.
    This paper criticizes the view that number words in argument position retain the meaning they have on an adjectival or determiner use, as argued by Hofweber :179–225, 2005) and Moltmann :499–534, 2013a, 2013b). In particular the paper re-evaluates syntactic evidence from German given in Moltmann to that effect.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  25. Boarding Neurath's Boat: The Early Development of Quine's Naturalism.Sander Verhaegh - 2017 - Journal of the History of Philosophy 55 (2):317-342.
    W. V. Quine is arguably the intellectual father of contemporary naturalism, the idea that there is no distinctively philosophical perspective on reality. Yet, even though Quine has always been a science-minded philosopher, he did not adopt a fully naturalistic perspective until the early 1950s. In this paper, I reconstruct the genesis of Quine’s ideas on the relation between science and philosophy. Scrutinizing his unpublished papers and notebooks, I examine Quine’s development in the first decades of his career. After identifying three (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  26. Numerical cognition and mathematical realism.Helen De Cruz - 2016 - Philosophers' Imprint 16.
    Humans and other animals have an evolved ability to detect discrete magnitudes in their environment. Does this observation support evolutionary debunking arguments against mathematical realism, as has been recently argued by Clarke-Doane, or does it bolster mathematical realism, as authors such as Joyce and Sinnott-Armstrong have assumed? To find out, we need to pay closer attention to the features of evolved numerical cognition. I provide a detailed examination of the functional properties of evolved numerical cognition, and propose that they prima (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   16 citations  
  27. The ‘Space’ at the Intersection of Platonism and Nominalism.Edward Slowik - 2015 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 46 (2):393-408.
    This essay explores the use of platonist and nominalist concepts, derived from the philosophy of mathematics and metaphysics, as a means of elucidating the debate on spacetime ontology and the spatial structures endorsed by scientific realists. Although the disputes associated with platonism and nominalism often mirror the complexities involved with substantivalism and relationism, it will be argued that a more refined three-part distinction among platonist/nominalist categories can nonetheless provide unique insights into the core assumptions that underlie spatial ontologies, but it (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  28. Abstract Expressionism and the Communication Problem.David Liggins - 2014 - British Journal for the Philosophy of Science 65 (3):599-620.
    Some philosophers have recently suggested that the reason mathematics is useful in science is that it expands our expressive capacities. Of these philosophers, only Stephen Yablo has put forward a detailed account of how mathematics brings this advantage. In this article, I set out Yablo’s view and argue that it is implausible. Then, I introduce a simpler account and show it is a serious rival to Yablo’s. 1 Introduction2 Yablo’s Expressionism3 Psychological Objections to Yablo’s Expressionism4 Introducing Belief Expressionism5 Objections and (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   27 citations  
  29. Reference to numbers in natural language.Friederike Moltmann - 2013 - Philosophical Studies 162 (3):499 - 536.
    A common view is that natural language treats numbers as abstract objects, with expressions like the number of planets, eight, as well as the number eight acting as referential terms referring to numbers. In this paper I will argue that this view about reference to numbers in natural language is fundamentally mistaken. A more thorough look at natural language reveals a very different view of the ontological status of natural numbers. On this view, numbers are not primarily treated abstract objects, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   59 citations  
  30. Weaseling and the Content of Science.David Liggins - 2012 - Mind 121 (484):997-1005.
    I defend Joseph Melia’s nominalist account of mathematics from an objection raised by Mark Colyvan.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   16 citations  
  31. Of Numbers and Electrons.Cian Dorr - 2010 - Proceedings of the Aristotelian Society 110 (2pt2):133-181.
    According to a tradition stemming from Quine and Putnam, we have the same broadly inductive reason for believing in numbers as we have for believing in electrons: certain theories that entail that there are numbers are better, qua explanations of our evidence, than any theories that do not. This paper investigates how modal theories of the form ‘Possibly, the concrete world is just as it in fact is and T’ and ‘Necessarily, if standard mathematics is true and the concrete world (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   23 citations  
  32. Inference to the best explanation and mathematical realism.Sorin Ioan Bangu - 2008 - Synthese 160 (1):13-20.
    Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   54 citations  
  33. Tarski's Nominalism.Greg Frost-Arnold - 2008 - In Douglas Patterson (ed.), New essays on Tarski and philosophy. New York: Oxford University Press.
    Alfred Tarski was a nominalist. But he published almost nothing on his nominalist views, and until recently the only sources scholars had for studying Tarski’s nominalism were conversational reports from his friends and colleagues. However, a recently-discovered archival resource provides the most detailed information yet about Tarski’s nominalism. Tarski spent the academic year 1940-41 at Harvard, along with many of the leading lights of scientific philosophy: Carnap, Quine, Hempel, Goodman, and (for the fall semester) Russell. This group met frequently to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Numbers versus Nominalists.Nathan Salmon - 2008 - Analysis 68 (3):177–182.
    A nominalist account of statements of number (e.g., ‘There are exactly two moons of Mars’) is rebutted.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  35. Anti-nominalism reconsidered.David Liggins - 2007 - Philosophical Quarterly 57 (226):104–111.
    Many philosophers of mathematics are attracted by nominalism – the doctrine that there are no sets, numbers, functions, or other mathematical objects. John Burgess and Gideon Rosen have put forward an intriguing argument against nominalism, based on the thought that philosophy cannot overrule internal mathematical and scientific standards of acceptability. I argue that Burgess and Rosen’s argument fails because it relies on a mistaken view of what the standards of mathematics require.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  36. Spacetime, Ontology, and Structural Realism.Edward Slowik - 2005 - International Studies in the Philosophy of Science 19 (2):147 – 166.
    This essay explores the possibility of constructing a structural realist interpretation of spacetime theories that can resolve the ontological debate between substantivalists and relationists. Drawing on various structuralist approaches in the philosophy of mathematics, as well as on the theoretical complexities of general relativity, our investigation will reveal that a structuralist approach can be beneficial to the spacetime theorist as a means of deflating some of the ontological disputes regarding similarly structured spacetimes.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   13 citations  
  37. Hilbert's program then and now.Richard Zach - 2002 - In Dale Jacquette (ed.), Philosophy of Logic. Malden, Mass.: North Holland. pp. 411–447.
    Hilbert’s program was an ambitious and wide-ranging project in the philosophy and foundations of mathematics. In order to “dispose of the foundational questions in mathematics once and for all,” Hilbert proposed a two-pronged approach in 1921: first, classical mathematics should be formalized in axiomatic systems; second, using only restricted, “finitary” means, one should give proofs of the consistency of these axiomatic systems. Although Gödel’s incompleteness theorems show that the program as originally conceived cannot be carried out, it had many partial (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   14 citations  
  38. Mathematics as Make-Believe: A Constructive Empiricist Account.Sarah Elizabeth Hoffman - 1999 - Dissertation, University of Alberta (Canada)
    Any philosophy of science ought to have something to say about the nature of mathematics, especially an account like constructive empiricism in which mathematical concepts like model and isomorphism play a central role. This thesis is a contribution to the larger project of formulating a constructive empiricist account of mathematics. The philosophy of mathematics developed is fictionalist, with an anti-realist metaphysics. In the thesis, van Fraassen's constructive empiricism is defended and various accounts of mathematics are considered and rejected. Constructive empiricism (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  39. Numbers and functions in Hilbert's finitism.Richard Zach - 1998 - Taiwanese Journal for History and Philosophy of Science 10:33-60.
    David Hilbert's finitistic standpoint is a conception of elementary number theory designed to answer the intuitionist doubts regarding the security and certainty of mathematics. Hilbert was unfortunately not exact in delineating what that viewpoint was, and Hilbert himself changed his usage of the term through the 1920s and 30s. The purpose of this paper is to outline what the main problems are in understanding Hilbert and Bernays on this issue, based on some publications by them which have so far received (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   9 citations  
  40. REVIEW OF Alfred Tarski, Collected Papers, vols. 1-4 (1986) edited by Steven Givant and Ralph McKenzie. [REVIEW]John Corcoran - 1991 - MATHEMATICAL REVIEWS 91 (h):01101-4.
    Alfred Tarski (1901--1983) is widely regarded as one of the two giants of twentieth-century logic and also as one of the four greatest logicians of all time (Aristotle, Frege and Gödel being the other three). Of the four, Tarski was the most prolific as a logician. The four volumes of his collected papers, which exclude most of his 19 monographs, span over 2500 pages. Aristotle's writings are comparable in volume, but most of the Aristotelian corpus is not about logic, whereas (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  41. On the possibility of completing an infinite process.Charles S. Chihara - 1965 - Philosophical Review 74 (1):74-87.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   11 citations