Transporte de Gametas, Fertilização e Segmentação

Download Edit this record How to cite View on PhilPapers
Abstract
TRANSPORTE DE GAMETAS, FERTILIZAÇÃO E SEGMENTAÇÃO • _____OBJETIVO O entendimento do desenvolvimento embrionário nos estágios iniciais, desde a deposição dos espermatozoides na fêmea, passando pela fertilização deste no ovócito e na formação do zigoto, é de suma importância para diferenciar especialistas em reprodução e manejo reprodutivo no mercado de trabalho e, também, durante a vida acadêmica. Compreender os processos que levam à formação do zigoto na fêmea é essencial para avaliar a capacidade reprodutiva dos animais e, mediante técnicas, avaliar o trato reprodutivo da fêmea e o desenvolvimento do embrião até a formação do feto e, por fim, em um novo animal sadio na propriedade. Com esse trabalho, o estudante de veterinária ou zootecnia, que deseja se aprofundar na fisiologia da reprodução animal, identificará os mecanismos que são envolvidos no transporte dos gametas, bem como os processos que estes últimos devem completar para alcançar a fertilização e para desencadear as divisões iniciais do embrião. • _____INTRODUÇÃO A fertilização ou fecundação é o processo pelo qual os gametas masculino (espermatozoide) e feminino (ovócito) se fundem para gerar um novo indivíduo. Seu êxito depende da culminação adequada dos diferentes processos que devem sofrer os gametas durante sua maduração e percurso; do transporte oportuno destes no trato reprodutivo da fêmea, assim como de uma série de adaptações dos órgãos genitais internos da mãe. A segmentação refere-se às primeiras divisões celulares do embrião. • _____TRANSPORTE DO OVÓCITO O ovócito que é liberado na ovulação, e que se encontra coberto pelas células do cumulus (figura 1), é capturado pela fímbria do infundíbulo ao aderir aos cílios. Esse processo é altamente eficaz, inclusive em espécies onde os ovários possuem várias formações globosas, por exemplo nas porcas, onde os ovidutos capturam entre 95 e 100% dos ovócitos que são ovulados. As contrações das camadas musculares do oviduto e o movimento intenso dos cílios da mucosa faz com que as secreções fluam em direção ao útero, transportando assim o complexo cumulus-ovócito. Esse transporte é relativamente rápido até alcançar a junção da ampola com o istmo (que é considerado o local de fertilização do espermatozoide e ovócito) a partir do qual se torna lento. Devido a fêmea estar em estro, o processo está sob controle endócrino, isto é, controle hormonal através do estradiol. Nas fêmeas domésticas, ao contrário das mulheres, o transporte ao longo do oviduto é extremamente eficiente, pois os embriões passam para o útero sem dificuldade, de modo que gestações ectópicas (tubárias ou em cavidade) são quase inexistentes. A égua, frequentemente, retém por muito tempo os ovócitos não fertilizados no oviduto, provavelmente devido a não secreção de substâncias (como a prostaglandina E) que poderiam favorecer sua passagem, como se propõe que aconteça com os embriões. A figura 2 apresenta um ovócito com suas respectivas estruturas. Figura 1: ovócitos de uma vaca madurados in vitro. Nota-se as células do cumulus que os recobre. Figura 2: estruturas do ovócito de uma ovelha que se encontra na etapa de ovócito secundário, depois da ovulação. Elaborado pelo autor. • _____TRANSPORTE ESPERMÁTICO Para que os espermatozoides sejam capazes de fertilizar o ovócito, deverão sofrer uma série de mudanças bioquímicas e morfológicas ao longo de sua passagem pelo aparelho reprodutor tanto masculino como feminino. Uma vez produzidos na parede do túbulo seminífero, os espermatozoides são liberados em direção ao lúmen tubular e transportados passivamente para uma estrutura ramificada conhecida como rede testicular (rete testis). Dessa rede são conduzidos em direção ao epidídimo passando através de 10 a 20 ductos eferentes localizados no polo superior do testículo. O epidídimo é dividido em três seções denominadas cabeça, corpo e cauda; é constituído por um só ducto longo e tortuoso que continua com o canal deferente. Ao final desemboca nas ampolas seminais, no ducto ejaculatório e na uretra. As funções do epidídimo são as de maduração, transporte e armazenamento dos espermatozoides. O transporte através do epidídimo é lento, aproximadamente de 10 dias em touros, e segue sendo passivo. Os espermatozoides tomados da cabeça do epidídimo são ainda imaturos e incapazes de fertilizar, enquanto os armazenados na cauda são completamente maduros. Durante o trânsito pelo epidídimo os espermatozoides adquirem motilidade e o potencial para fertilizar, o acrossomo é remodelado e a gota citoplasmática migra para o flagelo e é liberada. Quando um macho ejacula com muita frequência, é possível observar espermatozoides com gota citoplasmática no sêmen, já que não há tempo suficiente para que completem sua maduração. Os espermatozoides são expulsados fora do organismo durante a cópula, na masturbação ou em emissões espontâneas. Na ejaculação, os espermatozoides que se encontram suspensos nos fluidos do testículo e do epidídimo, misturam-se ao chegar na uretra com as secreções das glândulas acessórias para formar o sêmen. Essas secreções denominadas plasma seminal, proporcionam substâncias para manter o metabolismo energético das células espermáticas, e integram suas membranas elementos que impedem uma capacitação prematura. Durante a cópula, o sêmen é depositado na vagina ou no útero, variando entre as espécies (tabela 1). Na monta natural, geralmente, o serviço ocorre no momento propício, já que está definido pela fase do ciclo estral em que a fêmea é receptiva ao macho. No entanto, na inseminação artificial, é o macho que deverá determinar o momento ideal, e para isso é importante considerar a vida média dos gametas, ao qual é muito curta no caso dos ovócitos (tabela 1). Tabela 1: local de depósito do sêmen, volume da ejaculação e vida média dos gametas. Espécie Local de deposição Volume (ml) Velocidade de ejaculação Vida média do ovócito Vida média do espermatozoide Bovinos Intravaginal 2 1 – 3 seg 8 h 30 – 48 h Caninos Intravaginal 2 – 30 (10 média) 6 – 45 min 48 – 72 h 9 – 11 d Equinos Intrauterina 50 – 200 20 – 60 seg 6 – 8 h 72 – 120 h Humanos Intravaginal 3 - - 5 – 6 d Ovinos Intravaginal 1 1 – 2 seg 16 – 24 h 30 – 48 h Suínos Intrauterina 200 – 400 5 – 20 min 8 – 10 h 24 – 48 h Onde d = dias; h = horas. A vida fértil do ovócito é muito curta, portanto, o momento do serviço é de grande importância para obter altos índices de fertilização. Independentemente do local em que os espermatozoides sejam depositados no aparelho reprodutor feminino, serão expostos às secreções genitais e sofrem uma série de mudanças em seu trajeto até o local de fertilização antes de penetrar no ovócito. Nas espécies em que o sêmen é depositado na parte cranial da vagina, uma parte do mesmo penetra através da cérvix, enquanto outra parte é eliminada do aparelho genital da fêmea, em pouco tempo, através do fluxo retrógrado. O meio vaginal não é adequado e imobiliza os espermatozoides em pouco tempo, pelo qual deverão entrar no útero onde o ambiente é mais propício. O transporte espermático na fêmea é o resultado da alta contratilidade, do movimento ciliar e o fluido do aparelho genital durante o estro, ao qual está sob controle endócrino e do sistema nervoso. Esse transporte é favorecido pelas características especiais do muco estral, cujas moléculas formam uma espécie de canais que facilitam a passagem dos espermatozoides. Pelo contrário, durante a fase lútea seu transporte é dificultado. Além do meio vaginal, a cérvix também atua como barreira natural para limitar a passagem dos espermatozoides, diminuindo assim a possibilidade de polispermia. Funciona, também, como um filtro que seleciona os espermatozoides aptos dos que não o são, uma vez que somente os primeiros possuem uma motilidade vigorosa que lhes permite passar pelo muco altamente hidratado. Na vaca a cérvix é considerada como um reservatório espermático. Quando atravessam a cérvix, os espermatozoides seguem sua deslocação tanto por movimento próprio como pelas contrações uterinas e tubárias. Nas espécies em que o local de depósito do sêmen do macho na fêmea é intrauterino, como equinos, a principal barreira que os espermatozoides enfrentam é a união ou junção útero-tubárica. A união entre o útero e o oviduto (istmo do oviduto) serve como reservatório funcional dos espermatozoides nas espécies domésticas. Poucos minutos depois da cópula, é possível encontrar alguns espermatozoides no oviduto, que é conhecido como fase de transporte rápido. No entanto, esses espermato-zoides não são os que participam do processo de fertilização e podem apresentar certas anormalidades. Existe um segundo tipo de transporte denominado fase sustentada, a qual consiste na migração prolongada dos espermatozoides em direção as partes mais craniais do aparelho genital feminino, que conduzem à colonização do reservatório funcional e na liberação gradual dos espermatozoides dos reservatórios espermáticos, incluindo este último. O reservatório do istmo fornece aos espermatozoides um ambiente propício, protegendo-os contra a fagocitose, prolongando assim a sua viabilidade. Aqui os esper-matozoides permanecem aderidos a superfície das células ciliadas do epitélio até a finalização de sua capacitação, depois da qual são liberados quando alteram seu padrão de motilidade flagelada, fenômeno conhecido como hipermotilidade, e migram em ondas em direção ao local da fertilização. Dos milhões de espermatozoides ejaculados, somente alguns milhares alcançarão o istmo do oviduto e um número sumamente pequeno será encontrado nas imediações do ovócito no momento da fertilização. • _____CAPACITAÇÃO ESPERMÁTICA E REAÇÃO ACROSSÔMICA A capacitação é um processo gradual e essencial para a fertilização. Os espermato-zoides devem passar por um dado tempo de “incubação” no aparelho genital da fêmea e sofrer uma série de mudanças antes de serem capazes de fecundar o ovócito. A capacita-ção dos espermatozoides começa quando eles entram em contato com as secreções do aparelho genital da fêmea e termina no istmo do oviduto. Durante esse percurso a superfície da cabeça do espermatozoide se modifica já que algumas moléculas como o colesterol são removidas da membrana plasmática, aumentando sua fluidez e alterando suas propriedades bioquímicas. Entre outras coisas, essa reorganização dos lipídios facilita a entrada de cálcio extracelular pelos canais iônicos e ocasiona a desestabilização da membrana, tornando-a mais fusogênica. Também são eliminados outros fatores (conhecidos genericamente como fatores descapacitantes) que expõem receptores membranais indispensáveis para a realização da união entre o espermatozoide e o ovócito durante a fertilização. Os espermatozoides capacitados apresentam um padrão de hipermotilidade e uma maior atividade metabólica, características que devem obter para que sejam capazes de penetrar as camadas do ovócito. A capacitação é necessária para que ocorra a reação acrossômica. A reação acrossomal ou acrossômica (RA) é um fenômeno de exocitose que é desencadeada pela ligação entre as proteínas e receptores localizados na membrana do espermatozoide e a zona pelúcida do ovócito (figura 3). Envolve a fusão da membrana plasmática do espermatozoide com a membrana externa de seu acrossomo; formando, assim, pequenas vesículas, cujo conteúdo de enzimas hidrolíticas, como a hialuronidase e a acrosina, é liberado em direção ao seu exterior, facilitando a penetração da zona pelúcida. A adesão do espermatozoide à zona pelúcida é específica da espécie e depende de glicoproteínas presentes na membrana dos ovócitos maduros; a cabeça do espermatozoide se une com essas glicoproteínas mediante receptores específicos e atravessam em direção oblíqua a zona pelúcida até chegar ao espaço perivitelino. Nos mamíferos, particularmente em roedores e nos humanos, algumas dessas glicoproteínas são conhecidas como ZP1, ZP2 e ZP3. Pensa-se que a união da membrana espermática a esta última é o que desencadeia a reação acrossomal. Posteriormente, as vilosidades do ovócito entram em contato com o espermatozoide e a membrana presente na secreção equatorial da cabeça do espermatozoide, que tem proteínas fusogênicas específicas, une-se a membrana plasmática do ovócito, fusionando-se e permitindo a entrada do núcleo espermático ao citoplasma (figura 4). A capacitação dos espermatozoides é fundamental para o êxito da fertilização, uma vez que apenas os aptos estarão perfeitos e íntegros para que a união e percepção das glicoproteínas presentes nos mesmos possam ocorrer de forma ideal para a penetração deste no ovócito, fertilizá-lo e formar um zigoto. Figura 3: estrutura do espermatozoide. Nota: a membrana é acrossomal e não acrossonal. Elaborado pelo autor. Figura 4: eventos que ocorrem durante a fertilização. A – depois de passar através das células do cumulus, o espermatozoide entra em contato com a zona pelúcida, onde receptores da membrana plasmática reconhecem as proteínas da zona pelúcida; B – é desencadeada, então, a reação acrossomal; C – para que o espermatozoide penetre na zona pelúcida; D – ao atravessar a zona pelúcida e entrar no espaço perivitelino, a cabeça do espermatozoide entra em contato com a membrana vitelina; ambas membranas se fusionam graças ao reconhecimento de proteínas fusogênicas que estão no segmento equatorial. E – ocorre, então, que o núcleo do espermatozoide penetra no citoplasma do ovócito; uma das consequências da fusão da membrana com a cabeça do espermatozoide é a reação cortical, em que os grânulos corticais do ovócito liberam seu conteúdo em direção ao espaço perivitelino, o que resulta na alteração da estrutura da zona pelúcida e da membrana vitelina para bloquear a polispermia. Elaborado pelo autor. • _____CONSEQUÊNCIAS DA PENETRAÇÃO Bloqueio da polispermia A fusão das membranas dos gametas durante a penetração permite a entrada da fosfolipase C zeta (PLCζ) – fator solúvel que provém do espermatozoide – que desencadeia liberação e oscilações de Ca2+ no retículo endoplasmático. Isso, por sua vez, provoca a migração e fusão dos grânulos corticais, com a consequente liberação de enzimas, que mudam tanto a estrutura da zona pelúcida (por exemplo a inativação de ZP3), como a da membrana vitelina. Desse modo, impede-se que outros espermatozoides as penetrem, evitando assim a polispermia (figura 5). Figura 5: os grânulos corticais que encontram-se na periferia do citoplasma, debaixo da superfície da membrana do ovócito, migram e fusionam-se sobre a mesma, liberando seu conteúdo no espaço perivitelino imediatamente depois da penetração do espermatozoide. A – como conse-quência, tanto a membrana vitelina como a zona pelúcida são modificadas, impedindo a entrada de mais espermatozoides, o que evita a polispermia. B – o ovócito retoma, então, sua segunda divisão meiótica, que ocasiona a expulsão do segundo corpúsculo polar, e na formação dos pronúcleos feminino e masculino. C – continuando, os pronúcleos migram, suas membranas se dissolvem e os cromossomos de ambos se condensam e se unem. Completa-se, assim, a singamia e forma-se, então, o zigoto. Elaborado pelo autor baseado nos livros de embriologia e fisiologia da reprodução conforme vida bibliografia. Ativação do ovócito e formação de pronúcleos Na maioria das fêmeas domésticas, com exceção da cadela, o ovócito encontra-se suspenso na metáfase II da segunda meiose no momento da ovulação. A entrada da PLCζ do espermatozoide no citoplasma do ovócito, e a consequente liberação de Ca2+, faz com que o ovócito se ative, terminando a segunda divisão meiótica e expulse o segundo corpo polar. Posteriormente, o material nuclear do ovócito se reorganiza para formar o pronú-cleo feminino. Entretanto, a membrana nuclear do espermatozoide se dissolve, a cromatina descondensa-se, as protaminas são substituídas por histonas, e se forma uma nova membrana nuclear, dando lugar ao pronúcleo masculino. Singamia Uma vez que os pronúcleos feminino e masculino são formados, migram para o centro do ovócito, aproximam-se, suas membranas se dispersam e os cromossomos paternos e maternos se associam, com o qual recupera a condição diploide e dá origem ao zigoto (figura 5). • _____DESENVOLVIMENTO EMBRIONÁRIO Poucas horas após a fertilização ocorre a primeira divisão do zigoto em duas, depois em 4, 8, 16 e 32 células, denominadas blastômeros. Essas divisões mitóticas são conhecidas como divisões de segmentação ou clivagem (figura 6), uma vez que são realizadas sem aumento do citoplasma, de modo que com cada divisão os blastômeros se tornam menores. A partir das 16 células o embrião se chama mórula, e é visto como uma massa celular compacta. A compactação deve-se a informação de proteínas de ligação entre os blastômeros. O embrião acumula líquido em seu interior, formando uma cavidade denominada blastocele. Esse processo é conhecido como blastulação; o embrião, assim, passa a ser chamado de blastocisto. Nessa etapa é possível diferenciar duas populações de células embrionárias: a massa celular interna, embrioblasto ou botão embrionário (que dará origem ao embrião), e a massa celular externa, células superficiais ou trofoblasto, do qual se originam a maioria das membranas fetais. Ao continuar a multiplicação das células e a acumulação de líquido, o blastocisto aumenta de tamanho, convertendo-se em blastocisto expandido. A zona pelúcida torna-se mais fina e, finalmente, o embrião eclode; isto é, o embrião é liberado da zona pelúcida. • _____FERTILIZAÇÕES ATÍPICAS Polispermia É a penetração de dois ou mais espermatozoides no óvulo. Esta condição é letal nos mamíferos, já que o número cromossômico desse zigoto é maior que 2n, o envelheci-mento do ovócito da porca, como consequência do serviço tardio, favorece a apresentação da polispermia, por isso, é comum ver números de nascimentos de média de 10 a 12 leitões por parição nessa espécie. Nas aves, no entanto, a penetração de mais de um espermatozoide é normal, embora apenas um pronúcleo masculino se formará, fundindo-se com o feminino. Figura 6: etapas do processo de segmentação/clivagem. Fonte: aula de reprodução da professora Domenica Palomaris, UFT. Ginogênese É o desenvolvimento de um embrião a partir de um óvulo normal fecundado por um espermatozoide, mas sem a fusão dos cromossomos masculinos com os da fêmea. A função do espermatozoide, nesse caso, é a de ativação do ovócito para que este inicie seu desenvolvimento, mas não há fusão com o núcleo do espermatozoide. Ocorre em plantas, em nematódeos e em algumas espécies de peixes, por exemplo a Poecilia formosa, espécie em que os ovócitos das fêmeas são ativados por machos de outra espécie relacio-nada. Partenogênese Consiste no desenvolvimento do embrião sem a participação do espermatozoide. Ocorre em alguns insetos, o zangão, por exemplo, é partenogenético. Também pode apresentar-se em perus, cujos embriões são machos e, geralmente, morrem antes da eclosão. • _____GÊMEOS Existem dois tipos de gêmeos: idênticos ou monozigóticos e os não idênticos ou dizigóticos. Idênticos ou monozigóticos Originam-se do mesmo zigoto, sendo assim, possuem o mesmo genótipo e um fenótipo similar e, portanto, são do mesmo sexo. Em laboratório é possível gerá-los ao seccionar uma mórula em duas ou mais partes, por meio de um micromanipulador. Uma vez que possuem o mesmo genótipo, os produtos resultantes são clones. Não idênticos ou dizigóticos Provêm da fertilização de dois óvulos distintos por espermatozoides diferentes. Possuem, portanto, genótipos e fenótipos diferentes, e podem ser de sexo diferente. REFERÊNCIAS BIBLIOGRÁFICAS ALBERTS, Bruce et al. Biologia molecular da célula. Artmed Editora, 2010. AUSTIN, Colin Russell; SHORT, Roger Valentine. Reproduction in Mammals, Book I: Germ Cells and Fertilization. 1982. BEARDEN, Henry Joe et al. Reproducción animal aplicada. México: Manual Moderno, 1982. BOSCH, P.; WRIGHT JR, R. W. The oviductal sperm reservoir in domestic mammals. Archivos de medicina veterinaria, v. 37, n. 2, p. 95-105, 2005. CAPALLEJAS, Roberto Brito; RODRÍGUEZ, Lourdes Tagle. Fisiología de la reproducción animal: con elementos de biotecnología. Editorial Félix Varela, 2010. CROXATTO, Horacio B. Physiology of gamete and embryo transport through the fallopian tube. Reproductive biomedicine online, v. 4, n. 2, p. 160-169, 2002. CUPPS, Perry T. (Ed.). Reproduction in domestic animals. Elsevier, 1991. DIEDRICH, Smidt et al. Endocrinología y Fisiología de la Reproducción de los Animales Zootécnicos. 1972. DUKES, Henry Hugh; SWENSON, Melvin J.; REECE, William O. Dukes fisiologia dos animais domésticos. Editora Guanabara Koogan, 1996. FERREIRA, A. de M. Reprodução da fêmea bovina: fisiologia aplicada e problemas mais comuns (causas e tratamentos). Juiz de Fora: Minas Gerais–Brasil, p. 422, 2010. HAFEZ, Elsayed Saad Eldin; HAFEZ, Bahaa. Reprodução animal. São Paulo: Manole, 2004. HUNTER, Ronald Henry Fraser. The Fallopian tubes in domestic mammals: how vital is their physiological activity?. Reproduction Nutrition Development, v. 45, n. 3, p. 281-290, 2005. HUNTER, R. H. F.; RODRIGUEZ‐MARTINEZ, H. Capacitation of mammalian spermatozoa in vivo, with a specific focus on events in the Fallopian tubes. Molecular Reproduction and Development: Incorporating Gamete Research, v. 67, n. 2, p. 243-250, 2004. GALINA, Carlos; VALENCIA, Javier. Reproducción de los animales domésticos. 2006. HOPPER, Richard M. (Ed.). Bovine reproduction. John Wiley & Sons, 2014. HYTTEL, Poul; SINOWATZ, Fred; VEJLSTED, Morten. Embriologia veterinária. Elsevier Brasil, 2012. KÖLLE, Sabine; REESE, Sven; KUMMER, Wolfgang. New aspects of gamete transport, fertilization, and embryonic development in the oviduct gained by means of live cell imaging. Theriogenology, v. 73, n. 6, p. 786-795, 2010. MCKINNON, Angus O. et al. (Ed.). Equine reproduction. John Wiley & Sons, 2011. OLIVERA, Martha et al. El espermatozoide, desde la eyaculación hasta la fertilización. Revista Colombiana de Ciencias Pecuarias, v. 19, n. 4, p. 426-436, 2006. PLANT, Tony M.; ZELEZNIK, Anthony J. (Ed.). Knobil and Neill's physiology of reproduction. New York: Academic Press, 2014. RODRIGUEZ-MARTINEZ, Heriberto. Role of the oviduct in sperm capacitation. Theriogenology, v. 68, p. S138-S146, 2007. SAAVEDRA LEOS, María Dolores. Estudio de la composición de los gránulos corticales y del oolema de ovocitos porcinos y bovinos madurados y fecundados in vitro. Proyecto de investigación:, 2010. SENGER, Phillip L. et al. Pathways to pregnancy and parturition. Current Conceptions, Inc, 2004. SUAREZ, Susan S. The oviductal sperm reservoir in mammals: mechanisms of formation. Biology of Reproduction, v. 58, n. 5, p. 1105-1107, 1998. VALENCIA MÉNDEZ, Javier de J. Fisiología de la reproducción porcina. 1986. FIXAÇÃO DO ASSUNTO 1. Defina e diferencie fertilização e segmentação. 2. Disserte sobre o transporte do ovócito. Por que no istmo o transporte do ovócito se torna lento? 3. Fale sobre a eficiência do transporte do gameta no trato genital da fêmea e sobre a retenção de ovócitos pela égua. 4. Defina as células do cumulus e explique seu papel sobre o ovócito. 5. Quais as estruturas que compõem o ovócito? Qual a função de cada uma? 6. Todos os ovócitos das fêmeas domésticas são iguais? Justifique. 7. Disserte sobre o papel dos hormônios e das secreções sobre o transporte do ovócito no trato genital da fêmea. 8. Disserte sobre o transporte do espermatozoide. Por que há transporte rápido e lento dos espermatozoides? 9. Fale sobre o local de deposição do sêmen nas espécies domésticas e como esse influen-cia na eficiência da reprodução. 10. Por que a vida média do espermatozoide canino é maior que as outras espécies? 11. Quais as mudanças que os espermatozoides precisam sofrer para conseguir êxito na fertilização e por quê? 12. Defina fase de transporte rápido, fase sustentada e hipermotilidade. Qual a importân-cia de cada um? 13. Como ocorre a reação acrossômica? 14. O que é polispermia e como ocorre seu bloqueio? 15. Como ocorre a ativação do ovócito e como se formam os pronúcleos? 16. O que é e qual a importância da singamia? 17. Disserte sobre as divisões de segmentação e qual a importância destas para o êxito da reprodução. 18. Defina e diferencia mórula e blastocisto. 19. Defina e diferencie ginogênese e partenogênese. 20. Qual o papel endócrino e quais hormônios e enzimas atuam sobre o transporte de gametas, sobre a fertilização e sobre a segmentação?
PhilPapers/Archive ID
DASTDG
Upload history
Archival date: 2021-08-28
View other versions
Added to PP index
2021-08-28

Total views
33 ( #59,078 of 2,448,249 )

Recent downloads (6 months)
33 ( #20,085 of 2,448,249 )

How can I increase my downloads?

Downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.