Abstract
The classical theory of computation does not represent an adequate model of reality for simulation in the social sciences. The aim of this paper is to construct a methodological perspective that is able to conciliate the formal and empirical logic of program verification in computer science, with the interpretative and multiparadigmatic logic of the social sciences. We attempt to evaluate whether social simulation implies an additional perspective about the way one can understand the concepts of program and computation. We demonstrate that the logic of social simulation implies at least two distinct types of program verifications that reflect an epistemological distinction in the kind of knowledge one can have about programs. Computer programs seem to possess a causal capability (Fetzer, 1999) and an intentional capability that scientific theories seem not to possess. This distinction is associated with two types of program verification, which we call empirical and intentional verification. We demonstrate, by this means, that computational phenomena are also intentional phenomena, and that such is particularly manifest in agent-based social simulation. Ascertaining the credibility of results in social simulation requires a focus on the identification of a new category of knowledge we can have about computer programs. This knowledge should be considered an outcome of an experimental exercise, albeit not empirical, acquired within a context of limited consensus. The perspective of intentional computation seems to be the only one possible to reflect the multiparadigmatic character of social science in terms of agent-based computational social science. We contribute, additionally, to the clarification of several questions that are found in the methodological perspectives of the discipline, such as the computational nature, the logic of program scalability, and the multiparadigmatic character of agent-based simulation in the social sciences.