Abstract
While many different mechanisms contribute to the generation of spatial order in biological development, the formation of morphogenetic fields which in turn direct cell responses giving rise to pattern and form are of major importance and essential for embryogenesis and regeneration. Most likely the fields represent concentration patterns of substances produced by molecular kinetics. Short range autocatalytic activation in conjunction with longer range “lateral” inhibition or depletion effects is capable of generating such patterns (Gierer and Meinhardt, 1972). Non-linear reactions are required, and mathematical criteria were derived to design molecular models capable of pattern generation. The classical embryological feature of proportion regulation can be incorporated into the models. The conditions are mathematically necessary for the simplest two-factor case, and are likely to be a fair approximation in multi-component systems in which activation and inhibition are systems parameters subsuming the action of several agents. Gradients, symmetric and periodic patterns, in one or two dimensions, stable or pulsing in time, can be generated on this basis. Our basic concept of autocatalysis in conjunction with lateral inhibition accounts for self-regulatory biological features, including the reproducible formation of structures from near-uniform initial conditions as required by the logic of the generation cycle.
Real tissue form, for instance that of budding Hydra, may often be traced back to local curvature arising within an initially relatively flat cell sheet, the position of evagination being determined by morphogenetic fields. Shell theory developed for architecture may also be applied to such biological processes.