Abstract
Entscheidungen verweisen in einem begrifflichen Sinne auf Gründe. Entscheidungssysteme bieten eine probabilistische Verlässlichkeit als Rechtfertigung von Empfehlungen an. Doch nicht für alle Situationen mögen Verlässlichkeitsgründe auch angemessene Gründe sein. Damit eröffnet sich die Idee, die Güte von Gründen von ihrer Angemessenheit zu unterscheiden. Der Aufsatz betrachtet an einem Beispiel, einem KI-Lügendetektor, die Frage, ob eine (zumindest aktuell nicht gegebene) hohe Verlässlichkeit den Einsatz rechtfertigen kann. Gleicht er nicht einem Richter, der anhand einer Statistik Urteile fällen würde?