Mathematical Platonism

Edited by Rafal Urbaniak (Uniwersytetu Gdanskiego, Uniwersytetu Gdanskiego)
Assistant editors: Sam Roberts, Pawel Pawlowski
View topic on PhilPapers for more information
Related categories

69 found
Order:
More results on PhilPapers
1 — 50 / 69
  1. Halfway Up To the Mathematical Infinity I: On the Ontological & Epistemic Sustainability of Georg Cantor’s Transfinite Design.Edward G. Belaga - manuscript
    Georg Cantor was the genuine discoverer of the Mathematical Infinity, and whatever he claimed, suggested, or even surmised should be taken seriously -- albeit not necessary at its face value. Because alongside his exquisite in beauty ordinal construction and his fundamental powerset description of the continuum, Cantor has also left to us his obsessive presumption that the universe of sets should be subjected to laws similar to those governing the set of natural numbers, including the universal principles of cardinal comparability (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  2. The Philosophical Implications of the Loophole-Free Violation of Bell’s Inequality: Quantum Entanglement, Timelessness, Triple-Aspect Monism, Mathematical Platonism and Scientific Morality.Gilbert B. Côté - manuscript
    The demonstration of a loophole-free violation of Bell's inequality by Hensen et al. (2015) leads to the inescapable conclusion that timelessness and abstractness exist alongside space-time. This finding is in full agreement with the triple-aspect monism of reality, with mathematical Platonism, free will and the eventual emergence of a scientific morality.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. Platonism by the Numbers.Steven M. Duncan - manuscript
    In this paper, I defend traditional Platonic mathematical realism from its contemporary detractors, arguing that numbers, understood as abstract, non-physical objects of rational intuition, are indispensable for the act of counting.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  4. The Ontology of Number.Jeremy Horne - manuscript
    What is a number? Answering this will answer questions about its philosophical foundations - rational numbers, the complex numbers, imaginary numbers. If we are to write or talk about something, it is helpful to know whether it exists, how it exists, and why it exists, just from a common-sense point of view [Quine, 1948, p. 6]. Generally, there does not seem to be any disagreement among mathematicians, scientists, and logicians about numbers existing in some way, but currently, in the mainstream (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  5. Abstracta and Possibilia: Modal Foundations of Mathematical Platonism.Hasen Khudairi - manuscript
    This paper aims to provide modal foundations for mathematical platonism. I examine Hale and Wright's (2009) objections to the merits and need, in the defense of mathematical platonism and its epistemology, of the thesis of Necessitism. In response to Hale and Wright's objections to the role of epistemic and metaphysical modalities in providing justification for both the truth of abstraction principles and the success of mathematical predicate reference, I examine the Necessitist commitments of the abundant conception of properties endorsed by (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  6. Execution of the Universal Dream.Sergey Kljujkov - manuscript
    Even the ancient Greeks defined the Dream as a happy πόλις, Heraclitus - κόσμοπόλις, Socrates - ethical anthropology, Plato - Good, Hegel - absolute idea, Marx - communism... All of Humanity has made a lot of its survival experience for the realization of Dreams. Without any plan, to the touch to, only by the method of "trial and error" it aspired the Dream on unknown roads, which often stymied deadlocks. Among the many achieved results of Humanity by Plato's prompts, the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. How Can Mathematical Objects Be Real but Mind-Dependent?Hazhir Roshangar - manuscript
    Taking mathematics as a language based on empirical experience, I argue for an account of mathematics in which its objects are abstracta that describe and communicate the structure of reality based on some of our ancestral interactions with their environment. I argue that mathematics as a language is mostly invented, and it is mind-dependent in a specific sense. However, the bases of mathematics will characterize it as a real, non-fictional science of structures.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. An Intrinsic Theory of Quantum Mechanics: Progress in Field's Nominalistic Program, Part I.Eddy Keming Chen - 2017
    In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science Without Numbers (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  9. A Geneticist's Roadmap to Sanity.Gilbert B. Côté -
    World news can be discouraging these days. In order to counteract the effects of fake news and corruption, scientists have a duty to present the truth and propose ethical solutions acceptable to the world at large. -/- By starting from scratch, we can lay down the scientific principles underlying our very existence, and reach reasonable conclusions on all major topics including quantum physics, infinity, timelessness, free will, mathematical Platonism, happiness, ethics and religion, all the way to creation and a special (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  10. Unification and mathematical explanation in science.Sam Baron - forthcoming - Synthese:1-25.
    Mathematics clearly plays an important role in scientific explanation. Debate continues, however, over the kind of role that mathematics plays. I argue that if pure mathematical explananda and physical explananda are unified under a common explanation within science, then we have good reason to believe that mathematics is explanatory in its own right. The argument motivates the search for a new kind of scientific case study, a case in which pure mathematical facts and physical facts are explanatorily unified. I argue (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  11. How Does God Know That 2 + 2 = 4?Andrew Brenner - forthcoming - Religious Studies:1-16.
    Sometimes theists wonder how God's beliefs track particular portions of reality, e.g. contingent states of affairs, or facts regarding future free actions. In this article I sketch a general model for how God's beliefs track reality. God's beliefs track reality in much the same way that propositions track reality, namely via grounding. Just as the truth values of true propositions are generally or always grounded in their truthmakers, so too God's true beliefs are grounded in the subject matters of those (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  12. Ian Hacking, Why Is There Philosophy of Mathematics at All? [REVIEW]Max Harris Siegel - forthcoming - Mind 124.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  13. A Dilemma for Mathematical Constructivism.Samuel Kahn - 2021 - Axiomathes 31 (1):63-72.
    In this paper I argue that constructivism in mathematics faces a dilemma. In particular, I maintain that constructivism is unable to explain (i) the application of mathematics to nature and (ii) the intersubjectivity of mathematics unless (iii) it is conjoined with two theses that reduce it to a form of mathematical Platonism. The paper is divided into five sections. In the first section of the paper, I explain the difference between mathematical constructivism and mathematical Platonism and I outline my argument. (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  14. Epistemic Modality, Mind, and Mathematics.Hasen Khudairi - 2021 - Dissertation, University of St Andrews
    This book concerns the foundations of epistemic modality. I examine the nature of epistemic modality, when the modal operator is interpreted as concerning both apriority and conceivability, as well as states of knowledge and belief. The book demonstrates how epistemic modality relates to the computational theory of mind; metaphysical modality; the types of mathematical modality; to the epistemic status of undecidable propositions and abstraction principles in the philosophy of mathematics; to the modal profile of rational intuition; and to the types (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  15. Set-Theoretic Pluralism and the Benacerraf Problem.Justin Clarke-Doane - 2020 - Philosophical Studies 177 (7):2013-2030.
    Set-theoretic pluralism is an increasingly influential position in the philosophy of set theory (Balaguer [1998], Linksy and Zalta [1995], Hamkins [2012]). There is considerable room for debate about how best to formulate set-theoretic pluralism, and even about whether the view is coherent. But there is widespread agreement as to what there is to recommend the view (given that it can be formulated coherently). Unlike set-theoretic universalism, set-theoretic pluralism affords an answer to Benacerraf’s epistemological challenge. The purpose of this paper is (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  16. The Metametaphysics of Neo-Fregeanism.Matti Eklund - 2020 - In Ricki Bliss & James Miller (eds.), The Routledge Handbook of Metametaphysics. Routledge.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. Representational Indispensability and Ontological Commitment.John Heron - 2020 - Thought: A Journal of Philosophy 9 (2):105-114.
    Thought: A Journal of Philosophy, EarlyView.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. Mathematical and Moral Disagreement.Silvia Jonas - 2020 - Philosophical Quarterly 70 (279):302-327.
    The existence of fundamental moral disagreements is a central problem for moral realism and has often been contrasted with an alleged absence of disagreement in mathematics. However, mathematicians do in fact disagree on fundamental questions, for example on which set-theoretic axioms are true, and some philosophers have argued that this increases the plausibility of moral vis-à-vis mathematical realism. I argue that the analogy between mathematical and moral disagreement is not as straightforward as those arguments present it. In particular, I argue (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  19. A Reductionist Reading of Husserl’s Phenomenology by Mach’s Descriptivism and Phenomenalism.Vasil Penchev - 2020 - Continental Philosophy eJournal 13 (9):1-4.
    Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction. A comparison to Mach’s doctrine is used to be revealed the fundamental and philosophical reductionism of Husserl’s phenomenology leading to a kind of Pythagoreanism in the final (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. Two Deductions: (1) From the Totality to Quantum Information Conservation; (2) From the Latter to Dark Matter and Dark Energy.Vasil Penchev - 2020 - Information Theory and Research eJournal (Elsevier: SSRN) 1 (28):1-47.
    The paper discusses the origin of dark matter and dark energy from the concepts of time and the totality in the final analysis. Though both seem to be rather philosophical, nonetheless they are postulated axiomatically and interpreted physically, and the corresponding philosophical transcendentalism serves heuristically. The exposition of the article means to outline the “forest for the trees”, however, in an absolutely rigorous mathematical way, which to be explicated in detail in a future paper. The “two deductions” are two successive (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. Why Do Certain States of Affairs Call Out for Explanation? A Critique of Two Horwichian Accounts.Dan Baras - 2019 - Philosophia 47 (5):1405-1419.
    Motivated by examples, many philosophers believe that there is a significant distinction between states of affairs that are striking and therefore call for explanation and states of affairs that are not striking. This idea underlies several influential debates in metaphysics, philosophy of mathematics, normative theory, philosophy of modality, and philosophy of science but is not fully elaborated or explored. This paper aims to address this lack of clear explanation first by clarifying the epistemological issue at hand. Then it introduces an (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  22. Mathematical Explanation by Law.Sam Baron - 2019 - British Journal for the Philosophy of Science 70 (3):683-717.
    Call an explanation in which a non-mathematical fact is explained—in part or in whole—by mathematical facts: an extra-mathematical explanation. Such explanations have attracted a great deal of interest recently in arguments over mathematical realism. In this article, a theory of extra-mathematical explanation is developed. The theory is modelled on a deductive-nomological theory of scientific explanation. A basic DN account of extra-mathematical explanation is proposed and then redeveloped in the light of two difficulties that the basic theory faces. The final view (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  23. Animal Cognition, Species Invariantism, and Mathematical Realism.Helen De Cruz - 2019 - In Andrew Aberdein & Matthew Inglis (eds.), Advances in Experimental Philosophy of Logic and Mathematics. London: Bloomsbury Academic. pp. 39-61.
    What can we infer from numerical cognition about mathematical realism? In this paper, I will consider one aspect of numerical cognition that has received little attention in the literature: the remarkable similarities of numerical cognitive capacities across many animal species. This Invariantism in Numerical Cognition (INC) indicates that mathematics and morality are disanalogous in an important respect: proto-moral beliefs differ substantially between animal species, whereas proto-mathematical beliefs (at least in the animals studied) seem to show more similarities. This makes moral (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  24. Towards a Theory of Singular Thought About Abstract Mathematical Objects.James E. Davies - 2019 - Synthese 196 (10):4113-4136.
    This essay uses a mental files theory of singular thought—a theory saying that singular thought about and reference to a particular object requires possession of a mental store of information taken to be about that object—to explain how we could have such thoughts about abstract mathematical objects. After showing why we should want an explanation of this I argue that none of three main contemporary mental files theories of singular thought—acquaintance theory, semantic instrumentalism, and semantic cognitivism—can give it. I argue (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. The Enhanced Indispensability Argument, the Circularity Problem, and the Interpretability Strategy.Jan Heylen & Lars Arthur Tump - 2019 - Synthese 198 (4):3033-3045.
    Within the context of the Quine–Putnam indispensability argument, one discussion about the status of mathematics is concerned with the ‘Enhanced Indispensability Argument’, which makes explicit in what way mathematics is supposed to be indispensable in science, namely explanatory. If there are genuine mathematical explanations of empirical phenomena, an argument for mathematical platonism could be extracted by using inference to the best explanation. The best explanation of the primeness of the life cycles of Periodical Cicadas is genuinely mathematical, according to Baker (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  26. Easy Ontology Without Deflationary Metaontology.Daniel Z. Korman - 2019 - Philosophy and Phenomenological Research 99 (1):236-243.
    This is a contribution to a symposium on Amie Thomasson’s Ontology Made Easy (2015). Thomasson defends two deflationary theses: that philosophical questions about the existence of numbers, tables, properties, and other disputed entities can all easily be answered, and that there is something wrong with prolonged debates about whether such objects exist. I argue that the first thesis (properly understood) does not by itself entail the second. Rather, the case for deflationary metaontology rests largely on a controversial doctrine about the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   7 citations  
  27. Deflationary Nominalism and Puzzle Avoidance.David Mark Kovacs - 2019 - Philosophia Mathematica 27 (1):88-104.
    In a series of works, Jody Azzouni has defended deflationary nominalism, the view that certain sentences quantifying over mathematical objects are literally true, although such objects do not exist. One alleged attraction of this view is that it avoids various philosophical puzzles about mathematical objects. I argue that this thought is misguided. I first develop an ontologically neutral counterpart of Field’s reliability challenge and argue that deflationary nominalism offers no distinctive answer to it. I then show how this reasoning generalizes (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  28. Can Mathematical Objects Be Causally Efficacious?Seungbae Park - 2019 - Inquiry: An Interdisciplinary Journal of Philosophy 62 (3):247–255.
    Callard (2007) argues that it is metaphysically possible that a mathematical object, although abstract, causally affects the brain. I raise the following objections. First, a successful defence of mathematical realism requires not merely the metaphysical possibility but rather the actuality that a mathematical object affects the brain. Second, mathematical realists need to confront a set of three pertinent issues: why a mathematical object does not affect other concrete objects and other mathematical objects, what counts as a mathematical object, and how (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  29. Platonism in Lotze and Frege Between Psyschologism and Hypostasis.Nicholas Stang - 2019 - In Sandra Lapointe (ed.), Logic from Kant to Russell. Routledge. pp. 138–159.
    In the section “Validity and Existence in Logik, Book III,” I explain Lotze’s famous distinction between existence and validity in Book III of Logik. In the following section, “Lotze’s Platonism,” I put this famous distinction in the context of Lotze’s attempt to distinguish his own position from hypostatic Platonism and consider one way of drawing the distinction: the hypostatic Platonist accepts that there are propositions, whereas Lotze rejects this. In the section “Two Perspectives on Frege’s Platonism,” I argue that this (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  30. Reseña de 'The Outer Limits of Reason' por Noson Yanofsky 403p (2013).Michael Richard Starks - 2019 - In Observaciones Sobre Imposibilidad, Incompleta, Paracoherencia,Indecisión,Aleatoriedad, Computabilidad, Paradoja E Incertidumbre En Chaitin, Wittgenstein, Hofstadter, Wolpert, Doria, Dacosta, Godel, Searle, Rodych, Berto,Floyd, Moyal-Sharrock Y Yanofsky. Las Vegas, NV USA: Reality Press. pp. 71-90.
    Doy una revisión detallada de ' los límites externos de la razón ' por Noson Yanofsky desde una perspectiva unificada de Wittgenstein y la psicología evolutiva. Yo indiqué que la dificultad con cuestiones como la paradoja en el lenguaje y las matemáticas, la incompletitud, la indeterminación, la computabilidad, el cerebro y el universo como ordenadores, etc., surgen de la falta de mirada cuidadosa a nuestro uso del lenguaje en el adecuado contexto y, por tanto, el Error al separar los problemas (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  31. Rejecting Mathematical Realism While Accepting Interactive Realism.Seungbae Park - 2018 - Analysis and Metaphysics 17:7-21.
    Indispensablists contend that accepting scientific realism while rejecting mathematical realism involves a double standard. I refute this contention by developing an enhanced version of scientific realism, which I call interactive realism. It holds that interactively successful theories are typically approximately true, and that the interactive unobservable entities posited by them are likely to exist. It is immune to the pessimistic induction while mathematical realism is susceptible to it.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  32. Can We Have Mathematical Understanding of Physical Phenomena?Gabriel Târziu - 2018 - Theoria : An International Journal for Theory, History and Fundations of Science 33 (1):91-109.
    Can mathematics contribute to our understanding of physical phenomena? One way to try to answer this question is by getting involved in the recent philosophical dispute about the existence of mathematical explanations of physical phenomena. If there is such a thing, given the relation between explanation and understanding, we can say that there is an affirmative answer to our question. But what if we do not agree that mathematics can play an explanatory role in science? Can we still consider that (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  33. Importance and Explanatory Relevance: The Case of Mathematical Explanations.Gabriel Târziu - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):393-412.
    A way to argue that something plays an explanatory role in science is by linking explanatory relevance with importance in the context of an explanation. The idea is deceptively simple: a part of an explanation is an explanatorily relevant part of that explanation if removing it affects the explanation either by destroying it or by diminishing its explanatory power, i.e. an important part is an explanatorily relevant part. This can be very useful in many ontological debates. My aim in this (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Mathematical Explanations and the Piecemeal Approach to Thinking About Explanation.Gabriel Târziu - 2018 - Logique Et Analyse 61 (244):457-487.
    A new trend in the philosophical literature on scientific explanation is that of starting from a case that has been somehow identified as an explanation and then proceed to bringing to light its characteristic features and to constructing an account for the type of explanation it exemplifies. A type of this approach to thinking about explanation – the piecemeal approach, as I will call it – is used, among others, by Lange (2013) and Pincock (2015) in the context of their (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. Our Reliability is in Principle Explainable.Dan Baras - 2017 - Episteme 14 (2):197-211.
    Non-skeptical robust realists about normativity, mathematics, or any other domain of non- causal truths are committed to a correlation between their beliefs and non- causal, mind-independent facts. Hartry Field and others have argued that if realists cannot explain this striking correlation, that is a strong reason to reject their theory. Some consider this argument, known as the Benacerraf–Field argument, as the strongest challenge to robust realism about mathematics, normativity, and even logic. In this article I offer two closely related accounts (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   19 citations  
  36. Mathematics and Its Applications, A Transcendental-Idealist Perspective.Jairo Da Silva - 2017 - Springer.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  37. Autonomy Platonism and the Indispensability Argument. By Russell Marcus. Lanham, Md.: Lexington Books, 2015. Pp. Xii + 247. [REVIEW]Nicholas Danne - 2017 - Metaphilosophy 48 (4):591-594.
    Comprehensive resource for indispensability research.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  38. In Defense of Mathematical Inferentialism.Seungbae Park - 2017 - Analysis and Metaphysics 16:70-83.
    I defend a new position in philosophy of mathematics that I call mathematical inferentialism. It holds that a mathematical sentence can perform the function of facilitating deductive inferences from some concrete sentences to other concrete sentences, that a mathematical sentence is true if and only if all of its concrete consequences are true, that the abstract world does not exist, and that we acquire mathematical knowledge by confirming concrete sentences. Mathematical inferentialism has several advantages over mathematical realism and fictionalism.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   2 citations  
  39. Two Criticisms Against Mathematical Realism.Seungbae Park - 2017 - Diametros 52:96-106.
    Mathematical realism asserts that mathematical objects exist in the abstract world, and that a mathematical sentence is true or false, depending on whether the abstract world is as the mathematical sentence says it is. I raise two objections against mathematical realism. First, the abstract world is queer in that it allows for contradictory states of affairs. Second, mathematical realism does not have a theoretical resource to explain why a sentence about a tricle is true or false. A tricle is an (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  40. Knowledge of Abstract Objects in Physics and Mathematics.Michael Shaffer - 2017 - Acta Analytica 32 (4):397-409.
    In this paper a parallel is drawn between the problem of epistemic access to abstract objects in mathematics and the problem of epistemic access to idealized systems in the physical sciences. On this basis it is argued that some recent and more traditional approaches to solving these problems are problematic.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  41. Numerical Cognition and Mathematical Realism.Helen De Cruz - 2016 - Philosophers' Imprint 16.
    Humans and other animals have an evolved ability to detect discrete magnitudes in their environment. Does this observation support evolutionary debunking arguments against mathematical realism, as has been recently argued by Clarke-Doane, or does it bolster mathematical realism, as authors such as Joyce and Sinnott-Armstrong have assumed? To find out, we need to pay closer attention to the features of evolved numerical cognition. I provide a detailed examination of the functional properties of evolved numerical cognition, and propose that they prima (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   8 citations  
  42. Number and Reality: Sources of Scientific Knowledge.Alex V. Halapsis - 2016 - ScienceRise 23 (6):59-64.
    Pythagoras’s number doctrine had a great effect on the development of science. Number – the key to the highest reality, and such approach allowed Pythagoras to transform mathematics from craft into science, which continues implementation of its project of “digitization of being”. Pythagoras's project underwent considerable transformation, but it only means that the plan in knowledge is often far from result.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  43. Visa to Heaven: Orpheus, Pythagoras, and Immortality.Alex V. Halapsis - 2016 - ScienceRise 25 (8):60-65.
    The article deals with the doctrines of Orpheus and Pythagoras about the immortality of the soul in the context of the birth of philosophy in ancient Greece. Orpheus demonstrated the closeness of heavenly (divine) and earthly (human) worlds, and Pythagoras mathematically proved their fundamental identity. Greek philosophy was “an investment in the afterlife future”, being the product of the mystical (Orpheus) and rationalist (Pythagoras) theology.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  44. Problems with the Bootstrapping Objection to Theistic Activism.Christopher Menzel - 2016 - American Philosophical Quarterly 53 (1):55-68.
    According to traditional theism, God alone exists a se, independent of all other things, and all other things exist ab alio, i.e., God both creates them and sustains them in existence. On the face of it, divine "aseity" is inconsistent with classical Platonism, i.e., the view that there are objectively existing, abstract objects. For according to the classical Platonist, at least some abstract entities are wholly uncreated, necessary beings and, hence, as such, they also exist a se. The thesis of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  45. Against Mathematical Convenientism.Seungbae Park - 2016 - Axiomathes 26 (2):115-122.
    Indispensablists argue that when our belief system conflicts with our experiences, we can negate a mathematical belief but we do not because if we do, we would have to make an excessive revision of our belief system. Thus, we retain a mathematical belief not because we have good evidence for it but because it is convenient to do so. I call this view ‘ mathematical convenientism.’ I argue that mathematical convenientism commits the consequential fallacy and that it demolishes the Quine-Putnam (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
  46. Fourteen Arguments in Favour of a Formalist Philosophy of Real Mathematics.Karlis Podnieks - 2015 - Baltic Journal of Modern Computing 3 (1):1-15.
    The formalist philosophy of mathematics (in its purest, most extreme version) is widely regarded as a “discredited position”. This pure and extreme version of formalism is called by some authors “game formalism”, because it is alleged to represent mathematics as a meaningless game with strings of symbols. Nevertheless, I would like to draw attention to some arguments in favour of game formalism as an appropriate philosophy of real mathematics. For the most part, these arguments have not yet been used or (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  47. The Formula of Justice: The OntoTopological Basis of Physica and Mathematica*.Vladimir Rogozhin - 2015 - FQXi Essay Contest 2015.
    Dialectica: Mathematica and Physica, Truth and Justice, Trick and Life. Mathematica as the Constructive Metaphysica and Ontology. Mathematica as the constructive existential method. Сonsciousness and Mathematica: Dialectica of "eidos" and "logos". Mathematica is the Total Dialectica. The basic maternal Structure - "La Structure mère". Mathematica and Physica: loss of existential certainty. Is effectiveness of Mathematica "unreasonable"? The ontological structure of space. Axiomatization of the ontological basis of knowledge: one axiom, one principle and one mathematical object. The main ideas and concepts (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  48. If There Were No Numbers, What Would You Think?Thomas Mark Eden Donaldson - 2014 - Thought: A Journal of Philosophy 3 (4):283-287.
    Hartry Field has argued that mathematical realism is epistemologically problematic, because the realist is unable to explain the supposed reliability of our mathematical beliefs. In some of his discussions of this point, Field backs up his argument by saying that our purely mathematical beliefs do not ‘counterfactually depend on the facts’. I argue that counterfactual dependence is irrelevant in this context; it does nothing to bolster Field's argument.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   3 citations  
  49. Plato’s Philosophy of Cognition by Mathematical Modelling.Roman S. Kljujkov & Sergey F. Kljujkov - 2014 - Dialogue and Universalism 24 (3):110-115.
    By the end of his life Plato had rearranged the theory of ideas into his teaching about ideal numbers, but no written records have been left. The Ideal mathematics of Plato is present in all his dialogues. It can be clearly grasped in relation to the effective use of mathematical modelling. Many problems of mathematical modelling were laid in the foundation of the method by cutting the three-level idealism of Plato to the single-level “ideism” of Aristotle. For a long time, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  50. Mathematical Platonism and the Nature of Infinity.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (3):372-375.
    An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   4 citations  
1 — 50 / 69