View topic on PhilPapers for more information
Related categories

39 found
Order:
More results on PhilPapers
  1. added 2019-02-22
    Platonism in Lotze and Frege Between Psyschologism and Hypostasis.Nicholas Stang - 2019 - In Sandra Lapointe (ed.), Logic from Kant to Russell. Routledge. pp. 138–159.
    In the section “Validity and Existence in Logik, Book III,” I explain Lotze’s famous distinction between existence and validity in Book III of Logik. In the following section, “Lotze’s Platonism,” I put this famous distinction in the context of Lotze’s attempt to distinguish his own position from hypostatic Platonism and consider one way of drawing the distinction: the hypostatic Platonist accepts that there are propositions, whereas Lotze rejects this. In the section “Two Perspectives on Frege’s Platonism,” I argue that this (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  2. added 2018-12-22
    Plato’s Philosophy of Cognition by Mathematical Modelling.Roman S. Kljujkov & Sergey Kljujkov - 2014 - Dialogue and Universalism 24 (3):110-115.
    By the end of his life Plato had rearranged the theory of ideas into his teaching about ideal numbers, but no written records have been left. The Ideal mathematics of Plato is present in all his dialogues. It can be clearly grasped in relation to the effective use of mathematical modelling. Many problems of mathematical modelling were laid in the foundation of the method by cutting the three-level idealism of Plato to the single-level “ideism” of Aristotle. For a long time, (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  3. added 2018-11-14
    Why Do Certain States of Affairs Call Out for Explanation? A Critique of Two Horwichian Accounts.Dan Baras - 2018 - Philosophia:1-15.
    Motivated by examples, many philosophers believe that there is a significant distinction between states of affairs that are striking and therefore call for explanation and states of affairs that are not striking. This idea underlies several influential debates in metaphysics, philosophy of mathematics, normative theory, philosophy of modality, and philosophy of science but is not fully elaborated or explored. This paper aims to address this lack of clear explanation first by clarifying the epistemological issue at hand. Then it introduces an (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. added 2018-11-04
    Set-Theoretic Pluralism and the Benacerraf Problem.Justin Clarke-Doane - forthcoming - Philosophical Studies.
    Set-theoretic pluralism is an increasingly influential position in the philosophy of set theory (Balaguer [1998], Linksy and Zalta [1995], Hamkins [2012]). There is considerable room for debate about how best to formulate set-theoretic pluralism, and even about whether the view is coherent. But there is widespread agreement as to what there is to recommend the view (given that it can be formulated coherently). Unlike set-theoretic universalism, set-theoretic pluralism affords an answer to Benacerraf’s epistemological challenge. The purpose of this paper is (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark  
  5. added 2018-09-21
    Easy Ontology Without Deflationary Metaontology.Daniel Z. Korman - forthcoming - Philosophy and Phenomenological Research.
    This is a contribution to a symposium on Amie Thomasson’s Ontology Made Easy (2015). Thomasson defends two deflationary theses: that philosophical questions about the existence of numbers, tables, properties, and other disputed entities can all easily be answered, and that there is something wrong with prolonged debates about whether such objects exist. I argue that the first thesis (properly understood) does not by itself entail the second. Rather, the case for deflationary metaontology rests largely on a controversial doctrine about the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  6. added 2018-07-24
    Towards a Theory of Singular Thought About Abstract Mathematical Objects.James E. Davies - forthcoming - Synthese.
    This essay uses a mental files theory of singular thought—a theory saying that singular thought about and reference to a particular object requires possession of a mental store of information taken to be about that object—to explain how we could have such thoughts about abstract mathematical objects. After showing why we should want an explanation of this I argue that none of three main contemporary mental files theories of singular thought—acquaintance theory, semantic instrumentalism, and semantic cognitivism—can give it. I argue (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  7. added 2018-06-12
    Execution of the Universal Dream.Sergey Kljujkov - manuscript
    Even the ancient Greeks defined the Dream as a happy πόλις, Heraclitus - κόσμοπόλις, Socrates - ethical anthropology, Plato - Good, Hegel - absolute idea, Marx - communism... All of Humanity has made a lot of its survival experience for the realization of Dreams. Without any plan, to the touch to, only by the method of "trial and error" it aspired the Dream on unknown roads, which often stymied deadlocks. Among the many achieved results of Humanity by Plato's prompts, the (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  8. added 2018-03-19
    R. Schmit, Husserls Philosophie der Mathematik. Platonistische Und Konstruktivistische Momente in Husserls Mathematikbegriff. [REVIEW]B. Smith - 1983 - History and Philosophy of Logic 4 (2):230.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  9. added 2017-12-13
    An Intrinsic Theory of Quantum Mechanics: Progress in Field's Nominalistic Program, Part I.Eddy Keming Chen - manuscript
    In this paper, I introduce an intrinsic account of the quantum state. This account contains three desirable features that the standard platonistic account lacks: (1) it does not refer to any abstract mathematical objects such as complex numbers, (2) it is independent of the usual arbitrary conventions in the wave function representation, and (3) it explains why the quantum state has its amplitude and phase degrees of freedom. -/- Consequently, this account extends Hartry Field’s program outlined in Science Without Numbers (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  10. added 2017-11-01
    Can Mathematical Objects Be Causally Efficacious?Seungbae Park - 2018 - Inquiry: An Interdisciplinary Journal of Philosophy:00-00.
    Callard (2007) argues that it is metaphysically possible that a mathematical object, although abstract, causally affects the brain. I raise the following objections. First, a successful defence of mathematical realism requires not merely the metaphysical possibility but rather the actuality that a mathematical object affects the brain. Second, mathematical realists need to confront a set of three pertinent issues: why a mathematical object does not affect other concrete objects and other mathematical objects, what counts as a mathematical object, and how (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  11. added 2017-10-21
    Mathematics and Its Applications, A Transcendental-Idealist Perspective.Jairo Da Silva - 2017 - Springer.
    This monograph offers a fresh perspective on the applicability of mathematics in science. It explores what mathematics must be so that its applications to the empirical world do not constitute a mystery. In the process, readers are presented with a new version of mathematical structuralism. The author details a philosophy of mathematics in which the problem of its applicability, particularly in physics, in all its forms can be explained and justified. Chapters cover: mathematics as a formal science, mathematical ontology: what (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  12. added 2017-10-05
    Rejecting Mathematical Realism While Accepting Interactive Realism.Seungbae Park - 2018 - Analysis and Metaphysics 17:7-21.
    Indispensablists contend that accepting scientific realism while rejecting mathematical realism involves a double standard. I refute this contention by developing an enhanced version of scientific realism, which I call interactive realism. It holds that interactively successful theories are typically approximately true, and that the interactive unobservable entities posited by them are likely to exist. It is immune to the pessimistic induction while mathematical realism is susceptible to it.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  13. added 2017-09-21
    Review of C. S. Jenkins, Grounding Concepts: An Empirical Basis for Arithmetical Knowledge[REVIEW]Neil Tennant - 2010 - Philosophia Mathematica 18 (3):360-367.
    This book is written so as to be ‘accessible to philosophers without a mathematical background’. The reviewer can assure the reader that this aim is achieved, even if only by focusing throughout on just one example of an arithmetical truth, namely ‘7+5=12’. This example’s familiarity will be reassuring; but its loneliness in this regard will not. Quantified propositions — even propositions of Goldbach type — are below the author’s radar.The author offers ‘a new kind of arithmetical epistemology’, one which ‘respects (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  14. added 2017-07-04
    Two Criticisms Against Mathematical Realism.Seungbae Park - 2017 - Diametros 52:96-106.
    Mathematical realism asserts that mathematical objects exist in the abstract world, and that a mathematical sentence is true or false, depending on whether the abstract world is as the mathematical sentence says it is. I raise two objections against mathematical realism. First, the abstract world is queer in that it allows for contradictory states of affairs. Second, mathematical realism does not have a theoretical resource to explain why a sentence about a tricle is true or false. A tricle is an (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  15. added 2017-03-11
    In Defense of Mathematical Inferentialism.Seungbae Park - 2017 - Analysis and Metaphysics 16:70-83.
    I defend a new position in philosophy of mathematics that I call mathematical inferentialism. It holds that a mathematical sentence can perform the function of facilitating deductive inferences from some concrete sentences to other concrete sentences, that a mathematical sentence is true if and only if all of its concrete consequences are true, that the abstract world does not exist, and that we acquire mathematical knowledge by confirming concrete sentences. Mathematical inferentialism has several advantages over mathematical realism and fictionalism.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  16. added 2017-02-25
    Knowledge of Abstract Objects in Physics and Mathematics.Michael Shaffer - 2017 - Acta Analytica 32 (4):397-409.
    In this paper a parallel is drawn between the problem of epistemic access to abstract objects in mathematics and the problem of epistemic access to idealized systems in the physical sciences. On this basis it is argued that some recent and more traditional approaches to solving these problems are problematic.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  17. added 2016-10-31
    The Formula of Justice: The OntoTopological Basis of Physica and Mathematica*.Vladimir Rogozhin - 2015 - FQXi Essay Contest 2015.
    Dialectica: Mathematica and Physica, Truth and Justice, Trick and Life. Mathematica as the Constructive Metaphysica and Ontology. Mathematica as the constructive existential method. Сonsciousness and Mathematica: Dialectica of "eidos" and "logos". Mathematica is the Total Dialectica. The basic maternal Structure - "La Structure mère". Mathematica and Physica: loss of existential certainty. Is effectiveness of Mathematica "unreasonable"? The ontological structure of space. Axiomatization of the ontological basis of knowledge: one axiom, one principle and one mathematical object. The main ideas and concepts (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  18. added 2016-10-14
    The Absolute Generating Structure.Vladmir I. Rogozhin - 2012 - The Foundational Questions Institute (FQXi).
    The essential analysis of changing ideas of Space and Time for the period from the beginning of “Archimedes’ Second Revolution” is carried out to overcome the ontological groundlessness of the Knowledge and to expand its borders. Synthetic model of Triune (absolute) 12-dimensional Space-Time is built on the basis of Ontological construction method, Superaxiom and Superprinciple, the nature of Time is determined as a memory of material structure at a certain level of its holistic being.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  19. added 2016-10-02
    The Philosophical Implications of the Loophole-Free Violation of Bell’s Inequality: Quantum Entanglement, Timelessness, Triple-Aspect Monism, Mathematical Platonism and Scientific Morality.Gilbert B. Côté - manuscript
    The demonstration of a loophole-free violation of Bell's inequality by Hensen et al. (2015) leads to the inescapable conclusion that timelessness and abstractness exist alongside space-time. This finding is in full agreement with the triple-aspect monism of reality, with mathematical Platonism, free will and the eventual emergence of a scientific morality.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  20. added 2016-09-15
    Numerical Cognition and Mathematical Realism.Helen De Cruz - 2016 - Philosophers' Imprint 16.
    Humans and other animals have an evolved ability to detect discrete magnitudes in their environment. Does this observation support evolutionary debunking arguments against mathematical realism, as has been recently argued by Clarke-Doane, or does it bolster mathematical realism, as authors such as Joyce and Sinnott-Armstrong have assumed? To find out, we need to pay closer attention to the features of evolved numerical cognition. I provide a detailed examination of the functional properties of evolved numerical cognition, and propose that they prima (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. added 2016-04-17
    Frege, the Complex Numbers, and the Identity of Indiscernibles.Wenzel Christian Helmut - 2010 - Logique Et Analyse 53 (209):51-60.
    There are mathematical structures with elements that cannot be distinguished by the properties they have within that structure. For instance within the field of complex numbers the two square roots of −1, i and −i, have the same algebraic properties in that field. So how do we distinguish between them? Imbedding the complex numbers in a bigger structure, the quaternions, allows us to algebraically tell them apart. But a similar problem appears for this larger structure. There seems to be always (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  22. added 2016-03-15
    Quine, Putnam, and the 'Quine-Putnam' Indispensability Argument.David Liggins - 2008 - Erkenntnis 68 (1):113 - 127.
    Much recent discussion in the philosophy of mathematics has concerned the indispensability argument—an argument which aims to establish the existence of abstract mathematical objects through appealing to the role that mathematics plays in empirical science. The indispensability argument is standardly attributed to W. V. Quine and Hilary Putnam. In this paper, I show that this attribution is mistaken. Quine's argument for the existence of abstract mathematical objects differs from the argument which many philosophers of mathematics ascribe to him. Contrary to (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   25 citations  
  23. added 2016-03-02
    Our Reliability is in Principle Explainable.Dan Baras - 2017 - Episteme 14 (2):197-211.
    Non-skeptical robust realists about normativity, mathematics, or any other domain of non- causal truths are committed to a correlation between their beliefs and non- causal, mind-independent facts. Hartry Field and others have argued that if realists cannot explain this striking correlation, that is a strong reason to reject their theory. Some consider this argument, known as the Benacerraf–Field argument, as the strongest challenge to robust realism about mathematics, normativity, and even logic. In this article I offer two closely related accounts (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   6 citations  
  24. added 2015-08-28
    Against Mathematical Convenientism.Seungbae Park - 2016 - Axiomathes 26 (2):115-122.
    Indispensablists argue that when our belief system conflicts with our experiences, we can negate a mathematical belief but we do not because if we do, we would have to make an excessive revision of our belief system. Thus, we retain a mathematical belief not because we have good evidence for it but because it is convenient to do so. I call this view ‘ mathematical convenientism.’ I argue that mathematical convenientism commits the consequential fallacy and that it demolishes the Quine-Putnam (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  25. added 2015-08-25
    Fourteen Arguments in Favour of a Formalist Philosophy of Real Mathematics.Karlis Podnieks - 2015 - Baltic Journal of Modern Computing 3 (1):1-15.
    The formalist philosophy of mathematics (in its purest, most extreme version) is widely regarded as a “discredited position”. This pure and extreme version of formalism is called by some authors “game formalism”, because it is alleged to represent mathematics as a meaningless game with strings of symbols. Nevertheless, I would like to draw attention to some arguments in favour of game formalism as an appropriate philosophy of real mathematics. For the most part, these arguments have not yet been used or (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  26. added 2015-06-09
    Indispensability Without Platonism.Anne Newstead & James Franklin - 2012 - In Alexander Bird, Brian Ellis & Howard Sankey (eds.), Properties, Powers, and Structures: Issues in the Metaphysics of Realism. New York, USA: Routledge. pp. 81-97.
    According to Quine’s indispensability argument, we ought to believe in just those mathematical entities that we quantify over in our best scientific theories. Quine’s criterion of ontological commitment is part of the standard indispensability argument. However, we suggest that a new indispensability argument can be run using Armstrong’s criterion of ontological commitment rather than Quine’s. According to Armstrong’s criterion, ‘to be is to be a truthmaker (or part of one)’. We supplement this criterion with our own brand of metaphysics, 'Aristotelian (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  27. added 2015-06-03
    Subregular Tetrahedra.John Corcoran - 2008 - Bulletin of Symbolic Logic 14 (3):411-2.
    This largely expository lecture deals with aspects of traditional solid geometry suitable for applications in logic courses. Polygons are plane or two-dimensional; the simplest are triangles. Polyhedra [or polyhedrons] are solid or three-dimensional; the simplest are tetrahedra [or triangular pyramids, made of four triangles]. -/- A regular polygon has equal sides and equal angles. A polyhedron having congruent faces and congruent [polyhedral] angles is not called regular, as some might expect; rather they are said to be subregular—a word coined for (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  28. added 2015-03-24
    If There Were No Numbers, What Would You Think?Thomas Mark Eden Donaldson - 2014 - Thought: A Journal of Philosophy 3 (4):283-287.
    Hartry Field has argued that mathematical realism is epistemologically problematic, because the realist is unable to explain the supposed reliability of our mathematical beliefs. In some of his discussions of this point, Field backs up his argument by saying that our purely mathematical beliefs do not ‘counterfactually depend on the facts’. I argue that counterfactual dependence is irrelevant in this context; it does nothing to bolster Field's argument.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  29. added 2014-12-24
    Ian Hacking, Why Is There Philosophy of Mathematics at All? [REVIEW]Max Harris Siegel - forthcoming - Mind 124.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  30. added 2014-08-08
    Problems with the Bootstrapping Objection to Theistic Activism.Christopher Menzel - 2016 - American Philosophical Quarterly 53 (1):55-68.
    According to traditional theism, God alone exists a se, independent of all other things, and all other things exist ab alio, i.e., God both creates them and sustains them in existence. On the face of it, divine "aseity" is inconsistent with classical Platonism, i.e., the view that there are objectively existing, abstract objects. For according to the classical Platonist, at least some abstract entities are wholly uncreated, necessary beings and, hence, as such, they also exist a se. The thesis of (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  31. added 2014-07-23
    Platonism by the Numbers.Steven M. Duncan - manuscript
    In this paper, I defend traditional Platonic mathematical realism from its contemporary detractors, arguing that numbers, understood as abstract, non-physical objects of rational intuition, are indispensable for the act of counting.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  32. added 2014-03-06
    Inference to the Best Explanation and Mathematical Realism.Sorin Ioan Bangu - 2008 - Synthese 160 (1):13-20.
    Arguing for mathematical realism on the basis of Field’s explanationist version of the Quine–Putnam Indispensability argument, Alan Baker has recently claimed to have found an instance of a genuine mathematical explanation of a physical phenomenon. While I agree that Baker presents a very interesting example in which mathematics plays an essential explanatory role, I show that this example, and the argument built upon it, begs the question against the mathematical nominalist.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   18 citations  
  33. added 2014-01-16
    Pythagorean Powers or a Challenge to Platonism.Colin Cheyne & Charles R. Pigden - 1996 - Australasian Journal of Philosophy 74 (4):639 – 645.
    The Quine/Putnam indispensability argument is regarded by many as the chief argument for the existence of platonic objects. We argue that this argument cannot establish what its proponents intend. The form of our argument is simple. Suppose indispensability to science is the only good reason for believing in the existence of platonic objects. Either the dispensability of mathematical objects to science can be demonstrated and, hence, there is no good reason for believing in the existence of platonic objects, or their (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   5 citations  
  34. added 2013-12-23
    Mathematical Platonism and the Nature of Infinity.Gilbert B. Côté - 2013 - Open Journal of Philosophy 3 (3):372-375.
    An analysis of the counter-intuitive properties of infinity as understood differently in mathematics, classical physics and quantum physics allows the consideration of various paradoxes under a new light (e.g. Zeno’s dichotomy, Torricelli’s trumpet, and the weirdness of quantum physics). It provides strong support for the reality of abstractness and mathematical Platonism, and a plausible reason why there is something rather than nothing in the concrete universe. The conclusions are far reaching for science and philosophy.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   1 citation  
  35. added 2012-05-24
    Mathematical Platonism.Massimo Pigliucci - 2011 - Philosophy Now 84:47-47.
    Are numbers and other mathematical objects "out there" in some philosophically meaningful sense?
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  36. added 2011-03-03
    Cantor on Infinity in Nature, Number, and the Divine Mind.Anne Newstead - 2009 - American Catholic Philosophical Quarterly 83 (4):533-553.
    The mathematician Georg Cantor strongly believed in the existence of actually infinite numbers and sets. Cantor’s “actualism” went against the Aristotelian tradition in metaphysics and mathematics. Under the pressures to defend his theory, his metaphysics changed from Spinozistic monism to Leibnizian voluntarist dualism. The factor motivating this change was two-fold: the desire to avoid antinomies associated with the notion of a universal collection and the desire to avoid the heresy of necessitarian pantheism. We document the changes in Cantor’s thought with (...)
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark  
  37. added 2010-05-17
    Is There a Good Epistemological Argument Against Platonism?David Liggins - 2006 - Analysis 66 (2):135–141.
    Platonism in the philosophy of mathematics is the doctrine that there are mathematical objects such as numbers. John Burgess and Gideon Rosen have argued that that there is no good epistemological argument against platonism. They propose a dilemma, claiming that epistemological arguments against platonism either rely on a dubious epistemology, or resemble a dubious sceptical argument concerning perceptual knowledge. Against Burgess and Rosen, I show that an epistemological anti- platonist argument proposed by Hartry Field avoids both horns of their dilemma.
    Remove from this list   Download  
     
    Export citation  
     
    Bookmark   12 citations  
  38. added 2009-04-14
    REVIEW OF Alfred Tarski, Collected Papers, Vols. 1-4 (1986) Edited by Steven Givant and Ralph McKenzie. [REVIEW]John Corcoran - 1991 - MATHEMATICAL REVIEWS 91 (h):01101-4.
    Alfred Tarski (1901--1983) is widely regarded as one of the two giants of twentieth-century logic and also as one of the four greatest logicians of all time (Aristotle, Frege and Gödel being the other three). Of the four, Tarski was the most prolific as a logician. The four volumes of his collected papers, which exclude most of his 19 monographs, span over 2500 pages. Aristotle's writings are comparable in volume, but most of the Aristotelian corpus is not about logic, whereas (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark   2 citations  
  39. added 2009-04-13
    Halfway Up To the Mathematical Infinity I: On the Ontological & Epistemic Sustainability of Georg Cantor’s Transfinite Design.Edward G. Belaga - manuscript
    Georg Cantor was the genuine discoverer of the Mathematical Infinity, and whatever he claimed, suggested, or even surmised should be taken seriously -- albeit not necessary at its face value. Because alongside his exquisite in beauty ordinal construction and his fundamental powerset description of the continuum, Cantor has also left to us his obsessive presumption that the universe of sets should be subjected to laws similar to those governing the set of natural numbers, including the universal principles of cardinal comparability (...)
    Remove from this list   Download  
    Translate
     
     
    Export citation  
     
    Bookmark