Grundlagen der Logik und Mathematik: Der Standpunkt Wittgensteins

In Lampert Timm (ed.), Knowledge and Belief. pp. 44-51 (2003)
  Copy   BIBTEX

Abstract

Es wird gezeigt, dass Wittgenstein in seiner Frühphilosophie ein nicht-axiomatisches Beweisverständnis entwickelt, für das sich das Problem der Begründung der Axiome nicht stellt. Nach Wittgensteins Beweisverständnis besteht der Beweis einer formalen Eigenschaft einer Formel – z.B. der logischen Wahrheit einer prädikatenlogischen Formel oder der Gleichheit zweier arithmetischer Ausdrücke – in der Transformation der Formel in eine andere Notation, an deren Eigenschaften sich entscheiden lässt, ob die zu beweisende formale Eigenschaft besteht oder nicht besteht. Dieses Verständnis grenzt Wittgenstein gegenüber einem axiomatischen Beweisverständnis ab. Sein Beweisverständnis bedingt ein Programm der Grundlegung der Mathematik, das eine Alternative zu den Ansätzen des Logizismus, Formalismus und Konstruktivismus darstellt. Wittgensteins Ansatz steht im Widerspruch zu den Ergebnissen der Metamathematik, da er die Möglichkeit der Formulierung von Entscheidungsverfahren in der Prädikatenlogik und Arithmetik voraussetzt. Um seinem Ansatz gegenüber der traditionellen Metamathematik Recht zu geben, müsste gezeigt werden, dass sein Beweisverständnis im Bereich der Logik und Arithmetik – der traditionellen Metamathematik zum Trotz – realisierbar ist.

Author's Profile

Timm Lampert
Humboldt-University, Berlin

Analytics

Added to PP
2017-09-08

Downloads
360 (#61,830)

6 months
90 (#63,420)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?