Abstract
In his early philosophy as well as in his middle period, Wittgenstein holds a purely
syntactic view of logic and mathematics. However, his syntactic foundation of logic
and mathematics is opposed to the axiomatic approach of modern mathematical logic.
The object of Wittgenstein’s approach is not the representation of mathematical properties within a logical axiomatic system, but their representation by a symbolism that identifies the properties in question by its syntactic features. It rests on his distinction of descriptions and operations; its aim is to reduce mathematics to operations. This paper illustrates Wittgenstein’s approach by examining his discussion of irrational numbers.