Relativity Theory may not have the last Word on the Nature of Time: Quantum Theory and Probabilism

In G. Ghirardi & S. Wuppulur (eds.), Space, Time and the Limits of Human Understanding. Springer. pp. 109-124 (2017)
  Copy   BIBTEX


Two radically different views about time are possible. According to the first, the universe is three dimensional. It has a past and a future, but that does not mean it is spread out in time as it is spread out in the three dimensions of space. This view requires that there is an unambiguous, absolute, cosmic-wide "now" at each instant. According to the second view about time, the universe is four dimensional. It is spread out in both space and time - in space-time in short. Special and general relativity rule out the first view. There is, according to relativity theory, no such thing as an unambiguous, absolute cosmic-wide "now" at each instant. However, we have every reason to hold that both special and general relativity are false. Not only does the historical record tell us that physics advances from one false theory to another. Furthermore, elsewhere I have shown that we must interpret physics as having established physicalism - in so far as physics can ever establish anything theoretical. Physicalism, here, is to be interpreted as the thesis that the universe is such that some unified "theory of everything" is true. Granted physicalism, it follows immediately that any physical theory that is about a restricted range of phenomena only, cannot be true, whatever its empirical success may be. It follows that both special and general relativity are false. This does not mean of course that the implication of these two theories that there is no unambiguous cosmic-wide "now" at each instant is false. It still may be the case that the first view of time, indicated at the outset, is false. Are there grounds for holding that an unambiguous cosmic-wide "now" does exist, despite special and general relativity, both of which imply that it does not exist? There are such grounds. Elsewhere I have argued that, in order to solve the quantum wave/particle problem and make sense of the quantum domain we need to interpret quantum theory as a fundamentally probabilistic theory, a theory which specifies how quantum entities - electrons, photons, atoms - interact with one another probabilistically. It is conceivable that this is correct, and the ultimate laws of the universe are probabilistic in character. If so, probabilistic transitions could define unambiguous, absolute cosmic-wide "nows" at each instant. It is entirely unsurprising that special and general relativity have nothing to say about the matter. Both theories are pre-quantum mechanical, classical theories, and general relativity in particular is deterministic. The universe may indeed be three dimensional, with a past and a future, but not spread out in four dimensional space-time, despite the fact that relativity theories appear to rule this out. These considerations, finally, have implications for views about the arrow of time and free will.

Author's Profile

Nicholas Maxwell
University College London


Added to PP

445 (#18,869)

6 months
52 (#17,075)

Historical graph of downloads since first upload
This graph includes both downloads from PhilArchive and clicks on external links on PhilPapers.
How can I increase my downloads?