# Abstract

(This is for the Cambridge Handbook of Analytic Philosophy, edited by Marcus Rossberg)
In this handbook entry, I survey the different ways in which formal mathematical methods have been applied to philosophical questions throughout the history of analytic philosophy. I consider: formalization in symbolic logic, with examples such as Aquinas’ third way and Anselm’s ontological argument; Bayesian confirmation theory, with examples such as the fine-tuning argument for God and the paradox of the ravens; foundations of mathematics, with examples such as Hilbert’s programme and Gödel’s incompleteness theorems; social choice theory, with examples such as Condorcet’s paradox and Arrow’s theorem; ‘how possibly’ results, with examples such as Condorcet’s jury theorem and recent work on intersectionality theory; and the application of advanced mathematics in philosophy, with examples such as accuracy-first epistemology.