Results for 'mathematical philosophy'

1000+ found
Order:
  1. Deleuze and the Mathematical Philosophy of Albert Lautman.Simon B. Duffy - 2009 - In Jon Roffe & Graham Jones (eds.), Deleuze’s Philosophical Lineage. Edinburgh University Press.
    In the chapter of Difference and Repetition entitled ‘Ideas and the synthesis of difference,’ Deleuze mobilizes mathematics to develop a ‘calculus of problems’ that is based on the mathematical philosophy of Albert Lautman. Deleuze explicates this process by referring to the operation of certain conceptual couples in the field of contemporary mathematics: most notably the continuous and the discontinuous, the infinite and the finite, and the global and the local. The two mathematical theories that Deleuze draws upon (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  2. Natorp's mathematical philosophy of science.Thomas Mormann - 2022 - Studia Kantiana 20 (2):65 - 82.
    This paper deals with Natorp’s version of the Marburg mathematical philosophy of science characterized by the following three features: The core of Natorp’s mathematical philosophy of science is contained in his “knowledge equation” that may be considered as a mathematical model of the “transcendental method” conceived by Natorp as the essence of the Marburg Neo-Kantianism. For Natorp, the object of knowledge was an infinite task. This can be elucidated in two different ways: Carnap, in the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  3. The Paradoxism in Mathematics, Philosophy, and Poetry.Florentin Smarandache - 2022 - Bulletin of Pure and Applied Sciences 41 (1):46-48.
    This short article pairs the realms of “Mathematics”, “Philosophy”, and “Poetry”, presenting some corners of intersection of this type of scientocreativity. Poetry have long been following mathematical patterns expressed by stern formal restrictions, as the strong metrical structure of ancient Greek heroic epic, or the consistent meter with standardized rhyme scheme and a “volta” of Italian sonnets. Poetry was always connected to Philosophy, and further on, notable mathematicians, like the inventor of quaternions, William Rowan Hamilton, or Ion (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  4. Hobbes on Natural Philosophy as "True Physics" and Mixed Mathematics.Marcus P. Adams - 2016 - Studies in History and Philosophy of Science Part A 56 (C):43-51.
    I offer an alternative account of the relationship of Hobbesian geometry to natural philosophy by arguing that mixed mathematics provided Hobbes with a model for thinking about it. In mixed mathematics, one may borrow causal principles from one science and use them in another science without there being a deductive relationship between those two sciences. Natural philosophy for Hobbes is mixed because an explanation may combine observations from experience (the ‘that’) with causal principles from geometry (the ‘why’). My (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  5. Philosophy of Mathematics.Alexander Paseau (ed.) - 2016 - New York: Routledge.
    Mathematics is everywhere and yet its objects are nowhere. There may be five apples on the table but the number five itself is not to be found in, on, beside or anywhere near the apples. So if not in space and time, where are numbers and other mathematical objects such as perfect circles and functions? And how do we humans discover facts about them, be it Pythagoras’ Theorem or Fermat’s Last Theorem? The metaphysical question of what numbers are and (...)
    Download  
     
    Export citation  
     
    Bookmark  
  6. Abstract mathematical tools and machines for mathematics.Jean-Pierre Marquis - 1997 - Philosophia Mathematica 5 (3):250-272.
    In this paper, we try to establish that some mathematical theories, like K-theory, homology, cohomology, homotopy theories, spectral sequences, modern Galois theory (in its various applications), representation theory and character theory, etc., should be thought of as (abstract) machines in the same way that there are (concrete) machines in the natural sciences. If this is correct, then many epistemological and ontological issues in the philosophy of mathematics are seen in a different light. We concentrate on one problem which (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  7. Mathematics as a science of non-abstract reality: Aristotelian realist philosophies of mathematics.James Franklin - 2022 - Foundations of Science 27 (2):327-344.
    There is a wide range of realist but non-Platonist philosophies of mathematics—naturalist or Aristotelian realisms. Held by Aristotle and Mill, they played little part in twentieth century philosophy of mathematics but have been revived recently. They assimilate mathematics to the rest of science. They hold that mathematics is the science of X, where X is some observable feature of the (physical or other non-abstract) world. Choices for X include quantity, structure, pattern, complexity, relations. The article lays out and compares (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  8. A Constructive Treatment to Elemental Life Forms through Mathematical Philosophy.Susmit Bagchi - 2021 - Philosophies 6 (4):84.
    The quest to understand the natural and the mathematical as well as philosophical principles of dynamics of life forms are ancient in the human history of science. In ancient times, Pythagoras and Plato, and later, Copernicus and Galileo, correctly observed that the grand book of nature is written in the language of mathematics. Platonism, Aristotelian logism, neo-realism, monadism of Leibniz, Hegelian idealism and others have made efforts to understand reasons of existence of life forms in nature and the underlying (...)
    Download  
     
    Export citation  
     
    Bookmark  
  9. An Aristotelian Realist Philosophy of Mathematics: Mathematics as the science of quantity and structure.James Franklin - 2014 - London and New York: Palgrave MacMillan.
    An Aristotelian Philosophy of Mathematics breaks the impasse between Platonist and nominalist views of mathematics. Neither a study of abstract objects nor a mere language or logic, mathematics is a science of real aspects of the world as much as biology is. For the first time, a philosophy of mathematics puts applied mathematics at the centre. Quantitative aspects of the world such as ratios of heights, and structural ones such as symmetry and continuity, are parts of the physical (...)
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  10. Mathematical Modeling in Biology: Philosophy and Pragmatics.Rasmus Grønfeldt Winther - 2012 - Frontiers in Plant Evolution and Development 2012:1-3.
    Philosophy can shed light on mathematical modeling and the juxtaposition of modeling and empirical data. This paper explores three philosophical traditions of the structure of scientific theory—Syntactic, Semantic, and Pragmatic—to show that each illuminates mathematical modeling. The Pragmatic View identifies four critical functions of mathematical modeling: (1) unification of both models and data, (2) model fitting to data, (3) mechanism identification accounting for observation, and (4) prediction of future observations. Such facets are explored using a recent (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  11. Mathematics and metaphysics: The history of the Polish philosophy of mathematics from the Romantic era.Paweł Jan Polak - 2021 - Philosophical Problems in Science (Zagadnienia Filozoficzne W Nauce) 71:45-74.
    The Polish philosophy of mathematics in the 19th century is not a well-researched topic. For this period, only five philosophers are usually mentioned, namely Jan Śniadecki, Józef Maria Hoene-Wroński, Henryk Struve, Samuel Dickstein, and Edward Stamm. This limited and incomplete perspective does not allow us to develop a well-balanced picture of the Polish philosophy of mathematics and gauge its influence on 19th- and 20th-century Polish philosophy in general. To somewhat complete our picture of the history of the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  12. Mathematical Metaphors in Natorp’s Neo-Kantian Epistemology and Philosophy of Science.Thomas Mormann - 2005 - In Falk Seeger, Johannes Lenard & Michael H. G. Hoffmann (eds.), Activity and Sign. Grounding Mathematical Education. Springer.
    A basic thesis of Neokantian epistemology and philosophy of science contends that the knowing subject and the object to be known are only abstractions. What really exists, is the relation between both. For the elucidation of this “knowledge relation ("Erkenntnisrelation") the Neokantians of the Marburg school used a variety of mathematical metaphors. In this con-tribution I reconsider some of these metaphors proposed by Paul Natorp, who was one of the leading members of the Marburg school. It is shown (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  13. The connection between mathematics and philosophy on the discrete–structural plane of thinking: the discrete–structural model of the world.Eldar Amirov - 2017 - Гілея: Науковий Вісник 126 (11):266-270.
    The discrete–structural structure of the world is described. In comparison with the idea of Heraclitus about an indissoluble world, preference is given to the discrete world of Democritus. It is noted that if the discrete atoms of Democritus were simple and indivisible, the atoms of the modern world indicated in the article would possess, rather, a structural structure. The article proves the problem of how the mutual connection of mathematics and philosophy influences cognition, which creates a discrete–structural worldview. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  14. Signs as a Theme in the Philosophy of Mathematical Practice.David Waszek - 2024 - In Bharath Sriraman (ed.), Handbook of the History and Philosophy of Mathematical Practice. Cham: Springer.
    Why study notations, diagrams, or more broadly the variety of nonverbal “representations” or “signs” that are used in mathematical practice? This chapter maps out recent work on the topic by distinguishing three main philosophical motivations for doing so. First, some work (like that on diagrammatic reasoning) studies signs to recover norms of informal or historical mathematical practices that would get lost if the particular signs that these practices rely on were translated away; work in this vein has the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  15. Spinoza and the Philosophy of Science: Mathematics, Motion, and Being.Eric Schliesser - 1986, 2002
    This chapter argues that the standard conception of Spinoza as a fellow-travelling mechanical philosopher and proto-scientific naturalist is misleading. It argues, first, that Spinoza’s account of the proper method for the study of nature presented in the Theological-Political Treatise (TTP) points away from the one commonly associated with the mechanical philosophy. Moreover, throughout his works Spinoza’s views on the very possibility of knowledge of nature are decidedly sceptical (as specified below). Third, in the seventeenth-century debates over proper methods in (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  16. Philosophy and Mathematics at the Turn of the 18th Century: New Perspectives – Philosophie et mathématiques au tournant du XVIIIe siècle: perspectives nouvelles.Andrea Strazzoni & Marco Storni (eds.) - 2017 - Parma: E-theca OnLineOpenAccess Edizioni.
    The essays gathered in this issue of the journal Noctua focus on the various relationships that were established between philosophy and mathematics from Galileo and Descartes to Kant, passing by Newton.
    Download  
     
    Export citation  
     
    Bookmark  
  17. Assessing the “Empirical Philosophy of Mathematics”.Markus Pantsar - 2015 - Discipline Filosofiche:111-130.
    Abstract In the new millennium there have been important empirical developments in the philosophy of mathematics. One of these is the so-called “Empirical Philosophy of Mathematics”(EPM) of Buldt, Löwe, Müller and Müller-Hill, which aims to complement the methodology of the philosophy of mathematics with empirical work. Among other things, this includes surveys of mathematicians, which EPM believes to give philosophically important results. In this paper I take a critical look at the sociological part of EPM as a (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  18. Poincaré’s Philosophy of Mathematics.A. P. Bird - 2021 - Cantor's Paradise (00):00.
    It is undeniable Poincaré was a very famous and influential scientist. So, possibly because of it, it was relatively easy for him to participate in the heated discussions of the foundations of mathematics in the early 20th century. We can say it was “easy” because he didn't get involved in this subject by writing great treatises, or entire books about his own philosophy of mathematics (as other authors from the same period did). Poincaré contributed to the philosophy of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  19. ONE AND THE MULTIPLE ON THE PHILOSOPHY OF MATHEMATICS - ALEXIS KARPOUZOS.Alexis Karpouzos - 2025 - Comsic Spirit 1:6.
    The relationship between the One and the Multiple in mystic philosophy is a profound and central theme that explores the nature of existence, the cosmos, and the divine. This theme is present in various mystical traditions, including those of the East and West, and it addresses the paradoxical coexistence of the unity and multiplicity of all things. -/- In mystic philosophy, the **One** often represents the ultimate reality, the source from which all things emanate and to which all (...)
    Download  
     
    Export citation  
     
    Bookmark  
  20. Redrawing Kant's Philosophy of Mathematics.Joshua M. Hall - 2013 - South African Journal of Philosophy 32 (3):235-247.
    This essay offers a strategic reinterpretation of Kant’s philosophy of mathematics in Critique of Pure Reason via a broad, empirically based reconception of Kant’s conception of drawing. It begins with a general overview of Kant’s philosophy of mathematics, observing how he differentiates mathematics in the Critique from both the dynamical and the philosophical. Second, it examines how a recent wave of critical analyses of Kant’s constructivism takes up these issues, largely inspired by Hintikka’s unorthodox conception of Kantian intuition. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  21. 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115.John Corcoran - 1983 - MATHEMATICAL REVIEWS 83:03005.
    CORCORAN RECOMMENDS COCCHIARELLA ON TYPE THEORY. The 1983 review in Mathematical Reviews 83e:03005 of: Cocchiarella, Nino “The development of the theory of logical types and the notion of a logical subject in Russell's early philosophy: Bertrand Russell's early philosophy, Part I”. Synthese 45 (1980), no. 1, 71-115 .
    Download  
     
    Export citation  
     
    Bookmark  
  22. Du Châtelet’s Philosophy of Mathematics.Aaron Wells - forthcoming - In Fatema Amijee (ed.), The Bloomsbury Handbook of Du Châtelet. Bloomsbury.
    I begin by outlining Du Châtelet’s ontology of mathematical objects: she is an idealist, and mathematical objects are fictions dependent on acts of abstraction. Next, I consider how this idealism can be reconciled with her endorsement of necessary truths in mathematics, which are grounded in essences that we do not create. Finally, I discuss how mathematics and physics relate within Du Châtelet’s idealism. Because the primary objects of physics are partly grounded in the same kinds of acts as (...)
    Download  
     
    Export citation  
     
    Bookmark  
  23. Models, Mathematics and Deleuze's Philosophy: Some Remarks on Simon Duffy's Deleuze and the History of Mathematics: In Defence of the New.James Williams - 2017 - Deleuze and Guatarri Studies 11 (3):475-481.
    Download  
     
    Export citation  
     
    Bookmark  
  24. Practising Philosophy of Mathematics with Children.Elisa Bezençon - 2020 - Philosophy of Mathematics Education Journal 36.
    This article examines the possibility of philosophizing about mathematics with children. It aims at outlining the nature of the practice of philosophy of mathematics with children in a mainly theoretical and exploratory way. First, an attempt at a definition is proposed. Second, I suggest some reasons that might motivate such a practice. My thesis is that one can identify an intrinsic as well as two extrinsic goals of philosophizing about mathematics with children. The intrinsic goal is related to a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  25. Aristotelianism in the Philosophy of Mathematics.James Franklin - 2011 - Studia Neoaristotelica 8 (1):3-15.
    Modern philosophy of mathematics has been dominated by Platonism and nominalism, to the neglect of the Aristotelian realist option. Aristotelianism holds that mathematics studies certain real properties of the world – mathematics is neither about a disembodied world of “abstract objects”, as Platonism holds, nor it is merely a language of science, as nominalism holds. Aristotle’s theory that mathematics is the “science of quantity” is a good account of at least elementary mathematics: the ratio of two heights, for example, (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  26. From Mathematics to Quantum Mechanics - On the Conceptual Unity of Cassirer’s Philosophy of Science.Thomas Mormann - 2015 - In J. Tyler Friedman & Sebastian Luft (eds.), The Philosophy of Ernst Cassirer: A Novel Assessment. Boston: De Gruyter. pp. 31-64.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  27. Reconstruction in Philosophy of Mathematics.Davide Rizza - 2018 - Dewey Studies 2 (2):31-53.
    Throughout his work, John Dewey seeks to emancipate philosophical reflection from the influence of the classical tradition he traces back to Plato and Aristotle. For Dewey, this tradition rests upon a conception of knowledge based on the separation between theory and practice, which is incompatible with the structure of scientific inquiry. Philosophical work can make progress only if it is freed from its traditional heritage, i.e. only if it undergoes reconstruction. In this study I show that implicit appeals to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  28. Nietzsche’s Philosophy of Mathematics.Eric Steinhart - 1999 - International Studies in Philosophy 31 (3):19-27.
    Nietzsche has a surprisingly significant and strikingly positive assessment of mathematics. I discuss Nietzsche's theory of the origin of mathematical practice in the division of the continuum of force, his theory of numbers, his conception of the finite and the infinite, and the relations between Nietzschean mathematics and formalism and intuitionism. I talk about the relations between math, illusion, life, and the will to truth. I distinguish life and world affirming mathematical practice from its ascetic perversion. For Nietzsche, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  29. Mathematical Modality: An Investigation in Higher-order Logic.Andrew Bacon - forthcoming - Journal of Philosophical Logic.
    An increasing amount of contemporary philosophy of mathematics posits, and theorizes in terms of special kinds of mathematical modality. The goal of this paper is to bring recent work on higher-order metaphysics to bear on the investigation of these modalities. The main focus of the paper will be views that posit mathematical contingency or indeterminacy about statements that concern the `width' of the set theoretic universe, such as Cantor's continuum hypothesis. Within a higher-order framework I show that (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  30. The Paradigm Shift in the 19th-century Polish Philosophy of Mathematics.Paweł Polak - 2022 - Studia Historiae Scientiarum 21:217-235.
    The Polish philosophy of mathematics in the 19th century had its origins in the Romantic period under the influence of the then-predominant idealist philosophies. The decline of Romantic philosophy precipitated changes in general philosophy, but what is less well known is how it triggered changes in the philosophy of mathematics. In this paper, we discuss how the Polish philosophy of mathematics evolved from the metaphysical approach that had been formed during the Romantic era to the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  31. Some Remarks on Wittgenstein’s Philosophy of Mathematics.Richard Startup - 2020 - Open Journal of Philosophy 10 (1):45-65.
    Drawing mainly from the Tractatus Logico-Philosophicus and his middle period writings, strategic issues and problems arising from Wittgenstein’s philosophy of mathematics are discussed. Topics have been so chosen as to assist mediation between the perspective of philosophers and that of mathematicians on their developing discipline. There is consideration of rules within arithmetic and geometry and Wittgenstein’s distinctive approach to number systems whether elementary or transfinite. Examples are presented to illuminate the relation between the meaning of an arithmetical generalisation or (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  32. The philosophy of mathematics and the independent 'other'.Penelope Rush - unknown
    Download  
     
    Export citation  
     
    Bookmark  
  33. Mathematical Pluralism and Indispensability.Silvia Jonas - 2023 - Erkenntnis 1:1-25.
    Pluralist mathematical realism, the view that there exists more than one mathematical universe, has become an influential position in the philosophy of mathematics. I argue that, if mathematical pluralism is true (and we have good reason to believe that it is), then mathematical realism cannot (easily) be justified by arguments from the indispensability of mathematics to science. This is because any justificatory chain of inferences from mathematical applications in science to the total body of (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  34. Mathematics and argumentation.Andrew Aberdein - 2009 - Foundations of Science 14 (1-2):1-8.
    Some authors have begun to appeal directly to studies of argumentation in their analyses of mathematical practice. These include researchers from an impressively diverse range of disciplines: not only philosophy of mathematics and argumentation theory, but also psychology, education, and computer science. This introduction provides some background to their work.
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  35. On Jain Anekantavada and Pluralism in Philosophy of Mathematics.Landon D. C. Elkind - 2019 - International School for Jain Studies-Transactions 2 (3):13-20.
    I claim that a relatively new position in philosophy of mathematics, pluralism, overlaps in striking ways with the much older Jain doctrine of anekantavada and the associated doctrines of nyayavada and syadvada. I first outline the pluralist position, following this with a sketch of the Jain doctrine of anekantavada. I then note the srrong points of overlaps and the morals of this comparison of pluralism and anekantavada.
    Download  
     
    Export citation  
     
    Bookmark  
  36. Lakatos' Undone Work: The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science_ - Introduction to the Special Issue on _Lakatos’ Undone Work.Sophie Nagler, Hannah Pillin & Deniz Sarikaya - 2022 - Kriterion - Journal of Philosophy 36:1-10.
    We give an overview of Lakatos’ life, his philosophy of mathematics and science, as well as of this issue. Firstly, we briefly delineate Lakatos’ key contributions to philosophy: his anti-formalist philosophy of mathematics, and his methodology of scientific research programmes in the philosophy of science. Secondly, we outline the themes and structure of the masterclass Lakatos’ Undone Work – The Practical Turn and the Division of Philosophy of Mathematics and Philosophy of Science, which gave (...)
    Download  
     
    Export citation  
     
    Bookmark  
  37. Mathematical Models of Abstract Systems: Knowing abstract geometric forms.Jean-Pierre Marquis - 2013 - Annales de la Faculté des Sciences de Toulouse 22 (5):969-1016.
    Scientists use models to know the world. It i susually assumed that mathematicians doing pure mathematics do not. Mathematicians doing pure mathematics prove theorems about mathematical entities like sets, numbers, geometric figures, spaces, etc., they compute various functions and solve equations. In this paper, I want to exhibit models build by mathematicians to study the fundamental components of spaces and, more generally, of mathematical forms. I focus on one area of mathematics where models occupy a central role, namely (...)
    Download  
     
    Export citation  
     
    Bookmark  
  38.  77
    NEOPLATONIC STRUCTURALISM IN PHILOSOPHY OF MATHEMATICS.Inna Savynska - 2019 - The Days of Science of the Faculty of Philosophy – 2019 1:52-53.
    What is the ontological status of mathematical structures? Michael Resnic, Stewart Shapiro and Gianluigi Oliveri, are contemporaries of American philosophers on mathematics, they give Platonic answers on this question.
    Download  
     
    Export citation  
     
    Bookmark  
  39. Walter Dubislav’s Philosophy of Science and Mathematics.Nikolay Milkov - 2016 - Hopos: The Journal of the International Society for the History of Philosophy of Science 6 (1):96-116.
    Walter Dubislav (1895–1937) was a leading member of the Berlin Group for scientific philosophy. This “sister group” of the more famous Vienna Circle emerged around Hans Reichenbach’s seminars at the University of Berlin in 1927 and 1928. Dubislav was to collaborate with Reichenbach, an association that eventuated in their conjointly conducting university colloquia. Dubislav produced original work in philosophy of mathematics, logic, and science, consequently following David Hilbert’s axiomatic method. This brought him to defend formalism in these disciplines (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  40. Mathematical biology and the existence of biological laws.Mauro Dorato - 2012 - In D. Dieks, S. Hartmann, T. Uebel & M. Weber (eds.), Probabilities, Laws and Structure. Springer.
    An influential position in the philosophy of biology claims that there are no biological laws, since any apparently biological generalization is either too accidental, fact-like or contingent to be named a law, or is simply reducible to physical laws that regulate electrical and chemical interactions taking place between merely physical systems. In the following I will stress a neglected aspect of the debate that emerges directly from the growing importance of mathematical models of biological phenomena. My main aim (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  41. Mathematics and conceptual analysis.Antony Eagle - 2008 - Synthese 161 (1):67–88.
    Gödel argued that intuition has an important role to play in mathematical epistemology, and despite the infamy of his own position, this opinion still has much to recommend it. Intuitions and folk platitudes play a central role in philosophical enquiry too, and have recently been elevated to a central position in one project for understanding philosophical methodology: the so-called ‘Canberra Plan’. This philosophical role for intuitions suggests an analogous epistemology for some fundamental parts of mathematics, which casts a number (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  42. Structure and Categoricity: Determinacy of Reference and Truth Value in the Philosophy of Mathematics.Tim Button & Sean Walsh - 2016 - Philosophia Mathematica 24 (3):283-307.
    This article surveys recent literature by Parsons, McGee, Shapiro and others on the significance of categoricity arguments in the philosophy of mathematics. After discussing whether categoricity arguments are sufficient to secure reference to mathematical structures up to isomorphism, we assess what exactly is achieved by recent ‘internal’ renditions of the famous categoricity arguments for arithmetic and set theory.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  43. A Critique of Meillassoux’s Reflections on Mathematics From the Perspective of Bunge’s Philosophy.Martín Orensanz - 2020 - Mεtascience: Scientific General Discourse 1:115-133.
    Quentin Meillassoux is one of the leading French philosophers of today. His first book, Après la finitude : Essai sur la nécessité de la contingence, (2006, translated into English in 2008), has already become a cult classic. It features a préface by his former mentor, Alain Badiou. One of Meillassoux’s main goals is to rehabilitate the distinction between primary and secondary qualities, typical of pre-Kantian philosophies. Specifically, he claims that mathematics is capable of disclosing the primary qualities of any object (...)
    Download  
     
    Export citation  
     
    Bookmark  
  44. Mathematical Forms and Forms of Mathematics: Leaving the Shores of Extensional Mathematics.Jean-Pierre Marquis - 2013 - Synthese 190 (12):2141-2164.
    In this paper, I introduce the idea that some important parts of contemporary pure mathematics are moving away from what I call the extensional point of view. More specifically, these fields are based on criteria of identity that are not extensional. After presenting a few cases, I concentrate on homotopy theory where the situation is particularly clear. Moreover, homotopy types are arguably fundamental entities of geometry, thus of a large portion of mathematics, and potentially to all mathematics, at least according (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  45. Second philosophy: a naturalistic method.Penelope Maddy - 2007 - New York: Oxford University Press.
    Many philosophers these days consider themselves naturalists, but it's doubtful any two of them intend the same position by the term. In Second Philosophy, Penelope Maddy describes and practices a particularly austere form of naturalism called "Second Philosophy". Without a definitive criterion for what counts as "science" and what doesn't, Second Philosophy can't be specified directly ("trust only the methods of science" for example), so Maddy proceeds instead by illustrating the behaviors of an idealized inquirer she calls (...)
    Download  
     
    Export citation  
     
    Bookmark   133 citations  
  46. Mathematics as Make-Believe: A Constructive Empiricist Account.Sarah Elizabeth Hoffman - 1999 - Dissertation, University of Alberta (Canada)
    Any philosophy of science ought to have something to say about the nature of mathematics, especially an account like constructive empiricism in which mathematical concepts like model and isomorphism play a central role. This thesis is a contribution to the larger project of formulating a constructive empiricist account of mathematics. The philosophy of mathematics developed is fictionalist, with an anti-realist metaphysics. In the thesis, van Fraassen's constructive empiricism is defended and various accounts of mathematics are considered and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  47. Plato’s Philosophy of Cognition by Mathematical Modelling.Roman S. Kljujkov & Sergey F. Kljujkov - 2014 - Dialogue and Universalism 24 (3):110-115.
    By the end of his life Plato had rearranged the theory of ideas into his teaching about ideal numbers, but no written records have been left. The Ideal mathematics of Plato is present in all his dialogues. It can be clearly grasped in relation to the effective use of mathematical modelling. Many problems of mathematical modelling were laid in the foundation of the method by cutting the three-level idealism of Plato to the single-level “ideism” of Aristotle. For a (...)
    Download  
     
    Export citation  
     
    Bookmark  
  48. Editorial. Special Issue on Integral Biomathics: Life Sciences, Mathematics and Phenomenological Philosophy.Plamen L. Simeonov, Arran Gare, Seven M. Rosen & Denis Noble - 2015 - Progress in Biophysics and Molecular Biology 119 (3):208-218.
    The is the Editorial of the 2015 JPBMB Special Issue on Integral Biomathics: Life Sciences, Mathematics and Phenomenological Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  49. What are mathematical diagrams?Silvia De Toffoli - 2022 - Synthese 200 (2):1-29.
    Although traditionally neglected, mathematical diagrams have recently begun to attract attention from philosophers of mathematics. By now, the literature includes several case studies investigating the role of diagrams both in discovery and justification. Certain preliminary questions have, however, been mostly bypassed. What are diagrams exactly? Are there different types of diagrams? In the scholarly literature, the term “mathematical diagram” is used in diverse ways. I propose a working definition that carves out the phenomena that are of most importance (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  50. Explanation in mathematics: Proofs and practice.William D'Alessandro - 2019 - Philosophy Compass 14 (11):e12629.
    Mathematicians distinguish between proofs that explain their results and those that merely prove. This paper explores the nature of explanatory proofs, their role in mathematical practice, and some of the reasons why philosophers should care about them. Among the questions addressed are the following: what kinds of proofs are generally explanatory (or not)? What makes a proof explanatory? Do all mathematical explanations involve proof in an essential way? Are there really such things as explanatory proofs, and if so, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
1 — 50 / 1000