Switch to: Citations

Add references

You must login to add references.
  1. Achieving continuity: a story of stellar magnitude.Michael S. Evans - 2010 - Studies in History and Philosophy of Science Part A 41 (1):86-94.
    Scientists tell a story of 2,000 years of stellar magnitude research that traces back to Hipparchus. This story of continuity in practices serves an important role in scientific education and outreach. STS scholars point out many ways that stories of continuity, like many narratives about science, are disconnected from practices. Yet the story of continuity in stellar magnitude is a powerful scientific achievement precisely because of its connection to practice. The historical development of star catalogues shows how specific recording practices (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Experimental Realization of Interaction-free Measurements0.Mark Kasevich - 1995 - In John Archibald Wheeler, Daniel M. Greenberger & Anton Zeilinger (eds.), Fundamental problems in quantum theory: a conference held in honor of Professor John A. Wheeler. New York: New York Academy of Sciences. pp. 755--383.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Time symmetry and interpretation of quantum mechanics.O. Costa de Beauregard - 1976 - Foundations of Physics 6 (5):539-559.
    A drastic resolution of the quantum paradoxes is proposed, combining (I) von Neumann's postulate that collapse of the state vector is due to the act of observation, and (II) my reinterpretation of von Neumann's quantal irreversibility as an equivalence between wave retardation and entropy increase, both being “factlike” rather than “lawlike” (Mehlberg). This entails a coupling of the two de jure symmetries between (I) retarded and (II) advanced waves, and between Aristotle's information as (I) learning and (II) willing awareness. Symmetric (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • What Weak Measurements and Weak Values Really Mean: Reply to Kastner.Eliahu Cohen - 2017 - Foundations of Physics 47 (10):1261-1266.
    Despite their important applications in metrology and in spite of numerous experimental demonstrations, weak measurements are still confusing for part of the community. This sometimes leads to unjustified criticism. Recent papers have experimentally clarified the meaning and practical significance of weak measurements, yet in Kastner, Kastner seems to take us many years backwards in the the debate, casting doubt on the very term “weak value” and the meaning of weak measurements. Kastner appears to ignore both the basics and frontiers of (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Causally symmetric Bohm model.Roderick Ian Sutherland - 2008 - Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 39 (4):782-805.
    The aim of this paper is to construct a version of Bohm’s model that also includes the existence of backwards-in-time influences in addition to the usual forwards causation. The motivation for this extension is to remove the need in the existing model for a preferred reference frame. As is well known, Bohm’s explanation for the nonlocality of Bell’s theorem necessarily involves instantaneous changes being produced at space-like separations, in conflict with the “spirit” of special relativity even though these changes are (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • Reconciling Spacetime and the Quantum: Relational Blockworld and the Quantum Liar Paradox. [REVIEW]William Mark Stuckey, Michael Silbserstein & Michael Cifone - 2008 - Foundations of Physics 38 (4):348-383.
    The Relational Blockworld (RBW) interpretation of non-relativistic quantum mechanics (NRQM) is introduced. Accordingly, the spacetime of NRQM is a relational, non-separable blockworld whereby spatial distance is only defined between interacting trans-temporal objects. RBW is shown to provide a novel statistical interpretation of the wavefunction that deflates the measurement problem, as well as a geometric account of quantum entanglement and non-separability that satisfies locality per special relativity and is free of interpretative mystery. We present RBW’s acausal and adynamical resolution of the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Quantum Mechanics and the Principle of Maximal Variety.Lee Smolin - 2016 - Foundations of Physics 46 (6):736-758.
    Quantum mechanics is derived from the principle that the universe contain as much variety as possible, in the sense of maximizing the distinctiveness of each subsystem. The quantum state of a microscopic system is defined to correspond to an ensemble of subsystems of the universe with identical constituents and similar preparations and environments. A new kind of interaction is posited amongst such similar subsystems which acts to increase their distinctiveness, by extremizing the variety. In the limit of large numbers of (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Toy Models for Retrocausality.Huw Price - 2008 - Studies in Studies in History and Philosophy of Modern Physics 39 (4):752-761.
    A number of writers have been attracted to the idea that some of the peculiarities of quantum theory might be manifestations of 'backward' or 'retro' causality, underlying the quantum description. This idea has been explored in the literature in two main ways: firstly in a variety of explicit models of quantum systems, and secondly at a conceptual level. This note introduces a third approach, intended to complement the other two. It describes a simple toy model, which, under a natural interpretation, (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Quantum mechanical interaction-free measurements.Avshalom C. Elitzur & Lev Vaidman - 1993 - Foundations of Physics 23 (7):987-997.
    A novel manifestation of nonlocality of quantum mechanics is presented. It is shown that it is possible to ascertain the existence of an object in a given region of space without interacting with it. The method might have practical applications for delicate quantum experiments.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Demystifying Weak Measurements.R. E. Kastner - 2017 - Foundations of Physics 47 (5):697-707.
    A large literature has grown up around the proposed use of ‘weak measurements’ to allegedly provide information about hidden ontological features of quantum systems. This paper attempts to clarify the fact that ‘weak measurements’ involve strong measurements on one member of an entangled system. The only thing ‘weak’ about such measurements is that the correlation established via the entanglement does not correspond to eigenstates of the ‘weakly measured observable’ for the remaining component system subject to the weak measurement. All observed (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The transactional interpretation of quantum mechanics.John G. Cramer - 1986 - Reviews of Modern Physics 58 (3):647-687.
    Copenhagen interpretation of quantum mechanics deals with these problems is reviewed. A new interpretation of the formalism of quantum mechanics, the transactional interpretation, is presented. The basic element of this interpretation is the transaction describing a quantum event as an exchange of advanced and retarded waves, as implied by the work of Wheeler and Feynman, Dirac, and others. The transactional interpretation is explicitly nonlocal and thereby consistent with recent tests of the Bell inequality, yet is relativistically invariant and fully causal. (...)
    Download  
     
    Export citation  
     
    Bookmark   127 citations  
  • Time-dependent quantum weak values: Decay law for post-selected states.P. C. W. Davies - unknown
    Weak measurements offer new insights into the behavior of quantum systems. Combined with post-selection, quantum mechanics predicts a range of new experimentally testable phenomena. In this paper I consider weak measurements performed on time-dependent pre- and post-selected ensembles, with emphasis on the decay of excited states. The results show that the standard exponential decay law is a limiting case of a more general law that depends on both the time of post-selection and the choice of final state. The generalized law (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation