Switch to: Citations

Add references

You must login to add references.
  1. The incompleteness theorems.Craig Smorynski - 1977 - In Jon Barwise (ed.), Handbook of mathematical logic. New York: North-Holland. pp. 821 -- 865.
    Download  
     
    Export citation  
     
    Bookmark   102 citations  
  • On Σ1 1 equivalence relations over the natural numbers.Ekaterina B. Fokina & Sy-David Friedman - 2012 - Mathematical Logic Quarterly 58 (1-2):113-124.
    We study the structure of Σ11 equivalence relations on hyperarithmetical subsets of ω under reducibilities given by hyperarithmetical or computable functions, called h-reducibility and FF-reducibility, respectively. We show that the structure is rich even when one fixes the number of properly equation imagei.e., Σ11 but not equation image equivalence classes. We also show the existence of incomparable Σ11 equivalence relations that are complete as subsets of ω × ω with respect to the corresponding reducibility on sets. We study complete Σ11 (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Theory of recursive functions and effective computability.Hartley Rogers - 1987 - Cambridge: MIT Press.
    Download  
     
    Export citation  
     
    Bookmark   480 citations  
  • (1 other version)A Note on Positive Equivalence Relations.A. H. Lachlan - 1987 - Mathematical Logic Quarterly 33 (1):43-46.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • On the relation provable equivalence and on partitions in effectively inseparable sets.Claudio Bernardi - 1981 - Studia Logica 40 (1):29 - 37.
    We generalize a well-knownSmullyan's result, by showing that any two sets of the kindC a = {x/ xa} andC b = {x/ xb} are effectively inseparable (if I b). Then we investigate logical and recursive consequences of this fact (see Introduction).
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Classifying positive equivalence relations.Claudio Bernardi & Andrea Sorbi - 1983 - Journal of Symbolic Logic 48 (3):529-538.
    Given two (positive) equivalence relations ∼ 1 , ∼ 2 on the set ω of natural numbers, we say that ∼ 1 is m-reducible to ∼ 2 if there exists a total recursive function h such that for every x, y ∈ ω, we have $x \sim_1 y \operatorname{iff} hx \sim_2 hy$ . We prove that the equivalence relation induced in ω by a positive precomplete numeration is complete with respect to this reducibility (and, moreover, a "uniformity property" holds). This (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Computably enumerable equivalence relations.Su Gao & Peter Gerdes - 2001 - Studia Logica 67 (1):27-59.
    We study computably enumerable equivalence relations (ceers) on N and unravel a rich structural theory for a strong notion of reducibility among ceers.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (1 other version)A Note on Positive Equivalence Relations.A. H. Lachlan - 1987 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 33 (1):43-46.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets.Robert I. Soare - 1990 - Journal of Symbolic Logic 55 (1):356-357.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Relatively precomplete numerations and arithmetic.Franco Montagna - 1982 - Journal of Philosophical Logic 11 (4):419 - 430.
    Download  
     
    Export citation  
     
    Bookmark   17 citations