Switch to: References

Add citations

You must login to add citations.
  1. Turing reducibility in the fine hierarchy.Alexander G. Melnikov, Victor L. Selivanov & Mars M. Yamaleev - 2020 - Annals of Pure and Applied Logic 171 (7):102766.
    Download  
     
    Export citation  
     
    Bookmark  
  • Universal computably enumerable equivalence relations.Uri Andrews, Steffen Lempp, Joseph S. Miller, Keng Meng Ng, Luca San Mauro & Andrea Sorbi - 2014 - Journal of Symbolic Logic 79 (1):60-88.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The discontinuity of splitting in the recursively enumerable degrees.S. Barry Cooper & Xiaoding Yi - 1995 - Archive for Mathematical Logic 34 (4):247-256.
    In this paper we examine a class of pairs of recursively enumerable degrees, which is related to the Slaman-Soare Phenomenon.
    Download  
     
    Export citation  
     
    Bookmark  
  • Honest elementary degrees and degrees of relative provability without the cupping property.Paul Shafer - 2017 - Annals of Pure and Applied Logic 168 (5):1017-1031.
    Download  
     
    Export citation  
     
    Bookmark  
  • Every incomplete computably enumerable truth-table degree is branching.Peter A. Fejer & Richard A. Shore - 2001 - Archive for Mathematical Logic 40 (2):113-123.
    If r is a reducibility between sets of numbers, a natural question to ask about the structure ? r of the r-degrees containing computably enumerable sets is whether every element not equal to the greatest one is branching (i.e., the meet of two elements strictly above it). For the commonly studied reducibilities, the answer to this question is known except for the case of truth-table (tt) reducibility. In this paper, we answer the question in the tt case by showing that (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • A jump operator on honest subrecursive degrees.Lars Kristiansen - 1998 - Archive for Mathematical Logic 37 (2):105-125.
    It is well known that the structure of honest elementary degrees is a lattice with rather strong density properties. Let $\mbox{\bf a} \cup \mbox{\bf b}$ and $\mbox{\bf a} \cap \mbox{\bf b}$ denote respectively the join and the meet of the degrees $\mbox{\bf a}$ and $\mbox{\bf b}$ . This paper introduces a jump operator ( $\cdot'$ ) on the honest elementary degrees and defines canonical degrees $\mbox{\bf 0},\mbox{\bf 0}', \mbox{\bf 0}^{\prime \prime },\ldots$ and low and high degrees analogous to the corresponding (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Schnorr trivial sets and truth-table reducibility.Johanna N. Y. Franklin & Frank Stephan - 2010 - Journal of Symbolic Logic 75 (2):501-521.
    We give several characterizations of Schnorr trivial sets, including a new lowness notion for Schnorr triviality based on truth-table reducibility. These characterizations allow us to see not only that some natural classes of sets, including maximal sets, are composed entirely of Schnorr trivials, but also that the Schnorr trivial sets form an ideal in the truth-table degrees but not the weak truth-table degrees. This answers a question of Downey, Griffiths and LaForte.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • On the structures inside truth-table degrees.Frank Stephan - 2001 - Journal of Symbolic Logic 66 (2):731-770.
    The following theorems on the structure inside nonrecursive truth-table degrees are established: Dëgtev's result that the number of bounded truth-table degrees inside a truth-table degree is at least two is improved by showing that this number is infinite. There are even infinite chains and antichains of bounded truth-table degrees inside every truth-table degree. The latter implies an affirmative answer to the following question of Jockusch: does every truth-table degree contain an infinite antichain of many-one degrees? Some but not all truth-table (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Definability, automorphisms, and dynamic properties of computably enumerable sets.Leo Harrington & Robert I. Soare - 1996 - Bulletin of Symbolic Logic 2 (2):199-213.
    We announce and explain recent results on the computably enumerable (c.e.) sets, especially their definability properties (as sets in the spirit of Cantor), their automorphisms (in the spirit of Felix Klein's Erlanger Programm), their dynamic properties, expressed in terms of how quickly elements enter them relative to elements entering other sets, and the Martin Invariance Conjecture on their Turing degrees, i.e., their information content with respect to relative computability (Turing reducibility).
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On unstable and unoptimal prediction.Dariusz Kalociński & Tomasz Steifer - 2019 - Mathematical Logic Quarterly 65 (2):218-227.
    Download  
     
    Export citation  
     
    Bookmark  
  • Some structural properties of quasi-degrees.Roland Sh Omanadze - 2018 - Logic Journal of the IGPL 26 (1):191-201.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Covering the recursive sets.Bjørn Kjos-Hanssen, Frank Stephan & Sebastiaan A. Terwijn - 2017 - Annals of Pure and Applied Logic 168 (4):804-823.
    Download  
     
    Export citation  
     
    Bookmark  
  • Ramsey-type graph coloring and diagonal non-computability.Ludovic Patey - 2015 - Archive for Mathematical Logic 54 (7-8):899-914.
    A function is diagonally non-computable if it diagonalizes against the universal partial computable function. D.n.c. functions play a central role in algorithmic randomness and reverse mathematics. Flood and Towsner asked for which functions h, the principle stating the existence of an h-bounded d.n.c. function implies Ramsey-type weak König’s lemma. In this paper, we prove that for every computable order h, there exists an ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\omega}$$\end{document} -model of h-DNR which is not a not (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Emil Post.Alasdair Urquhart - 2009 - In Dov Gabbay (ed.), The Handbook of the History of Logic. Elsevier. pp. 5--617.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Learning via queries and oracles.Frank Stephan - 1998 - Annals of Pure and Applied Logic 94 (1-3):273-296.
    Inductive inference considers two types of queries: Queries to a teacher about the function to be learned and queries to a non-recursive oracle. This paper combines these two types — it considers three basic models of queries to a teacher (QEX[Succ], QEX[ The results for each of these three models of query-inference are the same: If an oracle is omniscient for query-inference then it is already omniscient for EX. There is an oracle of trivial EX-degree, which allows nontrivial query-inference. Furthermore, (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The translation theorem.Peter Cholak - 1994 - Archive for Mathematical Logic 33 (2):87-108.
    We state and prove the Translation Theorem. Then we apply the Translation Theorem to Soare's Extension Theorem, weakening slightly the hypothesis to yield a theorem we call the Modified Extension Theorem. We use this theorem to reprove several of the known results about orbits in the lattice of recursively enumerable sets. It is hoped that these proofs are easier to understand than the old proofs.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Degree spectra of the successor relation of computable linear orderings.Jennifer Chubb, Andrey Frolov & Valentina Harizanov - 2009 - Archive for Mathematical Logic 48 (1):7-13.
    We establish that for every computably enumerable (c.e.) Turing degree b the upper cone of c.e. Turing degrees determined by b is the degree spectrum of the successor relation of some computable linear ordering. This follows from our main result, that for a large class of linear orderings the degree spectrum of the successor relation is closed upward in the c.e. Turing degrees.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Q1-degrees of c.e. sets.R. Sh Omanadze & Irakli O. Chitaia - 2012 - Archive for Mathematical Logic 51 (5-6):503-515.
    We show that the Q-degree of a hyperhypersimple set includes an infinite collection of Q1-degrees linearly ordered under \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\leq_{Q_1}}$$\end{document} with order type of the integers and consisting entirely of hyperhypersimple sets. Also, we prove that the c.e. Q1-degrees are not an upper semilattice. The main result of this paper is that the Q1-degree of a hemimaximal set contains only one c.e. 1-degree. Analogous results are valid for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Diagonalization in double frames.Andrzej Wiśniewski & Jerzy Pogonowski - 2010 - Logica Universalis 4 (1):31-39.
    We consider structures of the form, where Φ and Ψ are non-empty sets and is a relation whose domain is Ψ. In particular, by using a special kind of a diagonal argument, we prove that if Φ is a denumerable recursive set, Ψ is a denumerable r.e. set, and R is an r.e. relation, then there exists an infinite family of infinite recursive subsets of Φ which are not R -images of elements of Ψ. The proof is a very elementary (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • 1-reducibility inside an m-degree with maximal set.E. Herrmann - 1992 - Journal of Symbolic Logic 57 (3):1046-1056.
    The structure of the l-degrees included in an m-degree with a maximal set together with the l-reducibility relation is characterized. For this a special sublattice of the lattice of recursively enumerable sets under the set-inclusion is used.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The theory of the recursively enumerable weak truth-table degrees is undecidable.Klaus Ambos-Spies, André Nies & Richard A. Shore - 1992 - Journal of Symbolic Logic 57 (3):864-874.
    We show that the partial order of Σ0 3-sets under inclusion is elementarily definable with parameters in the semilattice of r.e. wtt-degrees. Using a result of E. Herrmann, we can deduce that this semilattice has an undecidable theory, thereby solving an open problem of P. Odifreddi.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • A classification of low c.e. sets and the Ershov hierarchy.Marat Faizrahmanov - forthcoming - Mathematical Logic Quarterly.
    In this paper, we prove several results about the Turing jumps of low c.e. sets. We show that only Δ‐levels of the Ershov Hierarchy can properly contain the Turing jumps of c.e. sets and that there exists an arbitrarily large computable ordinal with a normal notation such that the corresponding Δ‐level is proper for the Turing jump of some c.e. set. Next, we generalize the notion of jump traceability to the jump traceability with ‐ and ‐bound for every infinite computable (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Detecting properties from descriptions of groups.Iva Bilanovic, Jennifer Chubb & Sam Roven - 2020 - Archive for Mathematical Logic 59 (3-4):293-312.
    We consider whether given a simple, finite description of a group in the form of an algorithm, it is possible to algorithmically determine if the corresponding group has some specified property or not. When there is such an algorithm, we say the property is recursively recognizable within some class of descriptions. When there is not, we ask how difficult it is to detect the property in an algorithmic sense. We consider descriptions of two sorts: first, recursive presentations in terms of (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The recursively enumerable degrees have infinitely many one-types.Klaus Ambos-Spies & Robert I. Soare - 1989 - Annals of Pure and Applied Logic 44 (1-2):1-23.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Undecidability in diagonalizable algebras.V. Shavrukov - 1997 - Journal of Symbolic Logic 62 (1):79-116.
    If a formal theory T is able to reason about its own syntax, then the diagonalizable algebra of T is defined as its Lindenbaum sentence algebra endowed with a unary operator □ which sends a sentence φ to the sentence □φ asserting the provability of φ in T. We prove that the first order theories of diagonalizable algebras of a wide class of theories are undecidable and establish some related results.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the complexity of classifying lebesgue spaces.Tyler A. Brown, Timothy H. Mcnicholl & Alexander G. Melnikov - 2020 - Journal of Symbolic Logic 85 (3):1254-1288.
    Computability theory is used to evaluate the complexity of classifying various kinds of Lebesgue spaces and associated isometric isomorphism problems.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • On minimal pairs of enumeration degrees.Kevin McEvoy & S. Barry Cooper - 1985 - Journal of Symbolic Logic 50 (4):983-1001.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Reverse mathematics and order theoretic fixed point theorems.Takashi Sato & Takeshi Yamazaki - 2017 - Archive for Mathematical Logic 56 (3-4):385-396.
    The theory of countable partially ordered sets is developed within a weak subsystem of second order arithmetic. We within RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA_0}$$\end{document} give definitions of notions of the countable order theory and present some statements of countable lattices equivalent to arithmetical comprehension axiom over RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA_0}$$\end{document}. Then we within RCA0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {RCA_0}$$\end{document} give proofs of Knaster–Tarski (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • H‐monotonically computable real numbers.Xizhong Zheng, Robert Rettinger & George Barmpalias - 2005 - Mathematical Logic Quarterly 51 (2):157-170.
    Let h : ℕ → ℚ be a computable function. A real number x is called h-monotonically computable if there is a computable sequence of rational numbers which converges to x h-monotonically in the sense that h|x – xn| ≥ |x – xm| for all n andm > n. In this paper we investigate classes h-MC of h-mc real numbers for different computable functions h. Especially, for computable functions h : ℕ → ℚ, we show that the class h-MC coincides (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Some notes on Church's thesis and the theory of games.Luca Anderlini - 1990 - Theory and Decision 29 (1):19-52.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Kolmogorov complexity and computably enumerable sets.George Barmpalias & Angsheng Li - 2013 - Annals of Pure and Applied Logic 164 (12):1187-1200.
    Download  
     
    Export citation  
     
    Bookmark  
  • A-computable graphs.Matthew Jura, Oscar Levin & Tyler Markkanen - 2016 - Annals of Pure and Applied Logic 167 (3):235-246.
    Download  
     
    Export citation  
     
    Bookmark  
  • A DNC function that computes no effectively bi-immune set.Achilles A. Beros - 2015 - Archive for Mathematical Logic 54 (5-6):521-530.
    Jockusch and Lewis proved that every DNC function computes a bi-immune set. They asked whether every DNC function computes an effectively bi-immune set. We construct a DNC function that computes no effectively bi-immune set, thereby answering their question in the negative.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Lachlan’s major sub-degree problem.S. Barry Cooper & Angsheng Li - 2008 - Archive for Mathematical Logic 47 (4):341-434.
    The Major Sub-degree Problem of A. H. Lachlan (first posed in 1967) has become a long-standing open question concerning the structure of the computably enumerable (c.e.) degrees. Its solution has important implications for Turing definability and for the ongoing programme of fully characterising the theory of the c.e. Turing degrees. A c.e. degree a is a major subdegree of a c.e. degree b > a if for any c.e. degree x, ${{\bf 0' = b \lor x}}$ if and only if (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • 1-genericity in the enumeration degrees.Kate Copestake - 1988 - Journal of Symbolic Logic 53 (3):878-887.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Learning theory in the arithmetic hierarchy II.Achilles A. Beros, Konstantinos A. Beros, Daniel Flores, Umar Gaffar, David J. Webb & Soowhan Yoon - 2020 - Archive for Mathematical Logic 60 (3-4):301-315.
    The present work determines the arithmetic complexity of the index sets of u.c.e. families which are learnable according to various criteria of algorithmic learning. Specifically, we prove that the index set of codes for families that are TxtFex\-learnable is \-complete and that the index set of TxtFex\-learnable and the index set of TxtFext\-learnable families are both \-complete.
    Download  
     
    Export citation  
     
    Bookmark  
  • A characterization of the 0 -basis homogeneous bounding degrees.Karen Lange - 2010 - Journal of Symbolic Logic 75 (3):971-995.
    We say a countable model ������ has a 0-basis if the types realized in ������ are uniformly computable. We say ������ has a (d-)decidable copy if there exists a model ������ ≅ ������ such that the elementary diagram of ������ is (d-)computable. Goncharov, Millar, and Peretyat'kin independently showed there exists a homogeneous model ������ with a 0-basis but no decidable copy. We extend this result here. Let d ≤ 0' be any low₂ degree. We show that there exists a homogeneous (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Maximal contiguous degrees.Peter Cholak, Rod Downey & Stephen Walk - 2002 - Journal of Symbolic Logic 67 (1):409-437.
    A computably enumerable (c.e.) degree is a maximal contiguous degree if it is contiguous and no c.e. degree strictly above it is contiguous. We show that there are infinitely many maximal contiguous degrees. Since the contiguous degrees are definable, the class of maximal contiguous degrees provides the first example of a definable infinite anti-chain in the c.e. degrees. In addition, we show that the class of maximal contiguous degrees forms an automorphism base for the c.e. degrees and therefore for the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On Δ 2 0 -categoricity of equivalence relations.Rod Downey, Alexander G. Melnikov & Keng Meng Ng - 2015 - Annals of Pure and Applied Logic 166 (9):851-880.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • There is no plus-capping degree.Rodney G. Downey & Steffen Lempp - 1994 - Archive for Mathematical Logic 33 (2):109-119.
    Answering a question of Per Lindström, we show that there is no “plus-capping” degree, i.e. that for any incomplete r.e. degreew, there is an incomplete r.e. degreea>w such that there is no r.e. degreev>w witha∩v=w.
    Download  
     
    Export citation  
     
    Bookmark