Switch to: Citations

Add references

You must login to add references.
  1. (1 other version)Subsystems of set theory and second order number theory.Wolfram Pohlers - 1998 - In Samuel R. Buss (ed.), Handbook of proof theory. New York: Elsevier. pp. 137--209.
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Zur Widerspruchsfreiheit der Zahlentheorie.Wilhelm Ackermann - 1940 - Journal of Symbolic Logic 5 (3):125-127.
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • Epsilon substitution method for theories of jump hierarchies.Toshiyasu Arai - 2002 - Archive for Mathematical Logic 41 (2):123-153.
    We formulate epsilon substitution method for theories (H)α0 of absolute jump hierarchies, and give two termination proofs of the H-process: The first proof is an adaption of Mints M, Mints-Tupailo-Buchholz MTB, i.e., based on a cut-elimination of a specially devised infinitary calculus. The second one is an adaption of Ackermann Ack. Each termination proof is based on transfinite induction up to an ordinal θ(α0+ ω)0, which is best possible.
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • (4 other versions)Epsilon substitution method for ID1.Toshiyasu Arai - 2003 - Annals of Pure and Applied Logic 121 (2-3):163-208.
    Hilbert proposed the epsilon substitution method as a basis for consistency proofs. Hilbert's Ansatz for finding a solving substitution for any given finite set of transfinite axioms is, starting with the null substitution S0, to correct false values step by step and thereby generate the process S0,S1,… . The problem is to show that the approximating process terminates. After Gentzen's innovation, Ackermann 162) succeeded to prove termination of the process for first order arithmetic. Inspired by G. Mints as an Ariadne's (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • (4 other versions)Epsilon substitution method for< i> ID< sub> 1(< i> Π< sub> 1< sup> 0∨< i> Σ_< sub> 1< sup> 0). [REVIEW]Toshiyasu Arai - 2003 - Annals of Pure and Applied Logic 121 (2):163-208.
    Download  
     
    Export citation  
     
    Bookmark   6 citations