Switch to: References

Add citations

You must login to add citations.
  1. Ideas in the epsilon substitution method for -FIX.Toshiyasu Arai - 2005 - Annals of Pure and Applied Logic 136 (1-2):3-21.
    Hilbert proposed the epsilon substitution method as a basis for consistency proofs. Hilbert’s Ansatz for finding a solving substitution for any given finite set of transfinite axioms is, starting with the null substitution S0, to correct false values step by step and thereby generate the process S0,S1,…. The problem is to show that the approximating process terminates. After Gentzen’s innovation, Ackermann [W. Ackermann, Zur Widerspruchsfreiheit der Zahlentheorie, Math. Ann. 117 162–194] succeeded in proving the termination of the process for the (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • The Epsilon Calculus and Herbrand Complexity.Georg Moser & Richard Zach - 2006 - Studia Logica 82 (1):133-155.
    Hilbert's ε-calculus is based on an extension of the language of predicate logic by a term-forming operator εx. Two fundamental results about the ε-calculus, the first and second epsilon theorem, play a rôle similar to that which the cut-elimination theorem plays in sequent calculus. In particular, Herbrand's Theorem is a consequence of the epsilon theorems. The paper investigates the epsilon theorems and the complexity of the elimination procedure underlying their proof, as well as the length of Herbrand disjunctions of existential (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • Hilbert’s Finitism: Historical, Philosophical, and Metamathematical Perspectives.Richard Zach - 2001 - Dissertation, University of California, Berkeley
    In the 1920s, David Hilbert proposed a research program with the aim of providing mathematics with a secure foundation. This was to be accomplished by first formalizing logic and mathematics in their entirety, and then showing---using only so-called finitistic principles---that these formalizations are free of contradictions. ;In the area of logic, the Hilbert school accomplished major advances both in introducing new systems of logic, and in developing central metalogical notions, such as completeness and decidability. The analysis of unpublished material presented (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The development of mathematical logic from Russell to Tarski, 1900-1935.Paolo Mancosu, Richard Zach & Calixto Badesa - 2009 - In Leila Haaparanta (ed.), The development of modern logic. New York: Oxford University Press.
    The period from 1900 to 1935 was particularly fruitful and important for the development of logic and logical metatheory. This survey is organized along eight "itineraries" concentrating on historically and conceptually linked strands in this development. Itinerary I deals with the evolution of conceptions of axiomatics. Itinerary II centers on the logical work of Bertrand Russell. Itinerary III presents the development of set theory from Zermelo onward. Itinerary IV discusses the contributions of the algebra of logic tradition, in particular, Löwenheim (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Hilbert’s Program.Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    In the early 1920s, the German mathematician David Hilbert (1862–1943) put forward a new proposal for the foundation of classical mathematics which has come to be known as Hilbert's Program. It calls for a formalization of all of mathematics in axiomatic form, together with a proof that this axiomatization of mathematics is consistent. The consistency proof itself was to be carried out using only what Hilbert called “finitary” methods. The special epistemological character of finitary reasoning then yields the required justification (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • (4 other versions)Epsilon substitution method for ID1.Toshiyasu Arai - 2003 - Annals of Pure and Applied Logic 121 (2-3):163-208.
    Hilbert proposed the epsilon substitution method as a basis for consistency proofs. Hilbert's Ansatz for finding a solving substitution for any given finite set of transfinite axioms is, starting with the null substitution S0, to correct false values step by step and thereby generate the process S0,S1,… . The problem is to show that the approximating process terminates. After Gentzen's innovation, Ackermann 162) succeeded to prove termination of the process for first order arithmetic. Inspired by G. Mints as an Ariadne's (...)
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Kreisel's 'Unwinding Program'.Solomon Feferman - 1996 - In Piergiorgio Odifreddi (ed.), Kreiseliana: About and Around Georg Kreisel. A K Peters. pp. 247--273.
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Where is the Gödel-Point Hiding: Gentzen’s Consistency Proof of 1936 and His Representation of Constructive Ordinals.Anna Horská - 2013 - Cham, Switzerland: Springer.
    This book explains the first published consistency proof of PA. It contains the original Gentzen's proof, but it uses modern terminology and examples to illustrate the essential notions. The author comments on Gentzen's steps which are supplemented with exact calculations and parts of formal derivations. A notable aspect of the proof is the representation of ordinal numbers that was developed by Gentzen. This representation is analysed and connection to set-theoretical representation is found, namely an algorithm for translating Gentzen's notation into (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Hilbert's 'Verunglückter Beweis', the first epsilon theorem, and consistency proofs.Richard Zach - 2004 - History and Philosophy of Logic 25 (2):79-94.
    In the 1920s, Ackermann and von Neumann, in pursuit of Hilbert's programme, were working on consistency proofs for arithmetical systems. One proposed method of giving such proofs is Hilbert's epsilon-substitution method. There was, however, a second approach which was not reflected in the publications of the Hilbert school in the 1920s, and which is a direct precursor of Hilbert's first epsilon theorem and a certain "general consistency result" due to Bernays. An analysis of the form of this so-called "failed proof" (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Gödel's functional interpretation and its use in current mathematics.Ulrich Kohlenbach - 2008 - Dialectica 62 (2):223–267.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Computational Content of Arithmetical Proofs.Stefan Hetzl - 2012 - Notre Dame Journal of Formal Logic 53 (3):289-296.
    For any extension $T$ of $I\Sigma_{1}$ having a cut-elimination property extending that of $I\Sigma_{1}$ , the number of different proofs that can be obtained by cut elimination from a single $T$ -proof cannot be bound by a function which is provably total in $T$.
    Download  
     
    Export citation  
     
    Bookmark  
  • Epsilon substitution for first- and second-order predicate logic.Grigori Mints - 2013 - Annals of Pure and Applied Logic 164 (6):733-739.
    The epsilon substitution method was proposed by D. Hilbert as a tool for consistency proofs. A version for first order predicate logic had been described and proved to terminate in the monograph “Grundlagen der Mathematik”. As far as the author knows, there have been no attempts to extend this approach to the second order case. We discuss possible directions for and obstacles to such extensions.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Epsilon Calculus.Jeremy Avigad & Richard Zach - 2014 - In Edward N. Zalta (ed.), The Stanford Encyclopedia of Philosophy. Stanford, CA: The Metaphysics Research Lab.
    The epsilon calculus is a logical formalism developed by David Hilbert in the service of his program in the foundations of mathematics. The epsilon operator is a term-forming operator which replaces quantifiers in ordinary predicate logic. Specifically, in the calculus, a term εx A denotes some x satisfying A(x), if there is one. In Hilbert's Program, the epsilon terms play the role of ideal elements; the aim of Hilbert's finitistic consistency proofs is to give a procedure which removes such terms (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Recursive Functions and Metamathematics: Problems of Completeness and Decidability, Gödel's Theorems.Rod J. L. Adams & Roman Murawski - 1999 - Dordrecht, Netherland: Springer Verlag.
    Traces the development of recursive functions from their origins in the late nineteenth century to the mid-1930s, with particular emphasis on the work and influence of Kurt Gödel.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Cut elimination for a simple formulation of epsilon calculus.Grigori Mints - 2008 - Annals of Pure and Applied Logic 152 (1):148-160.
    A simple cut elimination proof for arithmetic with the epsilon symbol is used to establish the termination of a modified epsilon substitution process. This opens a possibility of extension to much stronger systems.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Towards a certain “contextualism”.J. Fang - 1972 - Philosophia Mathematica (1):53-92.
    Download  
     
    Export citation  
     
    Bookmark  
  • The practice of finitism: Epsilon calculus and consistency proofs in Hilbert's program.Richard Zach - 2003 - Synthese 137 (1-2):211 - 259.
    After a brief flirtation with logicism around 1917, David Hilbertproposed his own program in the foundations of mathematics in 1920 and developed it, in concert with collaborators such as Paul Bernays andWilhelm Ackermann, throughout the 1920s. The two technical pillars of the project were the development of axiomatic systems for everstronger and more comprehensive areas of mathematics, and finitisticproofs of consistency of these systems. Early advances in these areaswere made by Hilbert (and Bernays) in a series of lecture courses atthe (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Hilbert and set theory.Burton Dreben & Akihiro Kanamori - 1997 - Synthese 110 (1):77-125.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Consistency, Models, and Soundness.Matthias Schirn - 2010 - Axiomathes 20 (2):153-207.
    This essay consists of two parts. In the first part, I focus my attention on the remarks that Frege makes on consistency when he sets about criticizing the method of creating new numbers through definition or abstraction. This gives me the opportunity to comment also a little on H. Hankel, J. Thomae—Frege’s main targets when he comes to criticize “formal theories of arithmetic” in Die Grundlagen der Arithmetik (1884) and the second volume of Grundgesetze der Arithmetik (1903)—G. Cantor, L. E. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Extensions of the Finitist Point of View.Matthias Schirn & Karl-Georg Niebergall - 2001 - History and Philosophy of Logic 22 (3):135-161.
    Hilbert developed his famous finitist point of view in several essays in the 1920s. In this paper, we discuss various extensions of it, with particular emphasis on those suggested by Hilbert and Bernays in Grundlagen der Mathematik (vol. I 1934, vol. II 1939). The paper is in three sections. The first deals with Hilbert's introduction of a restricted ? -rule in his 1931 paper ?Die Grundlegung der elementaren Zahlenlehre?. The main question we discuss here is whether the finitist (meta-)mathematician would (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Ackermann’s substitution method.Georg Moser - 2006 - Annals of Pure and Applied Logic 142 (1):1-18.
    We aim at a conceptually clear and technically smooth investigation of Ackermann’s substitution method [W. Ackermann, Zur Widerspruchsfreiheit der Zahlentheorie, Math. Ann. 117 162–194]. Our analysis provides a direct classification of the provably recursive functions of , i.e. Peano Arithmetic framed in the ε-calculus.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Thoralf Skolem and the epsilon substitution method for predicate logic.Grigori Mints - 1996 - Nordic Journal of Philosophical Logic 1 (2):133-146.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Slow versus fast growing.Andreas Weiermann - 2002 - Synthese 133 (1-2):13 - 29.
    We survey a selection of results about majorization hierarchies. The main focus is on classical and recent results about the comparison between the slow and fast growing hierarchies.
    Download  
     
    Export citation  
     
    Bookmark   3 citations