Switch to: Citations

Add references

You must login to add references.
  1. On the Stone: von Neumann Uniqueness Theorem and Its Ramifications.Stephen Summers - 2001 - Vienna Circle Institute Yearbook 8:135-152.
    In the mid to late 1920s, the emerging theory of quantum mechanics had two main competing formalisms — the wave mechanics of E. Schrödinger [61] and the matrix mechanics of W. Heisenberg, M. Born and P. Jordan [27][2][3].1 Though a connection between the two was quickly pointed out by Schrödinger himself — see paper III in [61] — among others, the folk-theoretic “equivalence” between wave and matrix mechanics continued to generate more detailed study, even into our times.
    Download  
     
    Export citation  
     
    Bookmark   29 citations  
  • Critical review: Paul Teller's interpretive introduction to quantum field theory.Nick Huggett & Robert Weingard - 1996 - Philosophy of Science 63 (2):302.
    Paul Teller's new book, “An Interpretive Introduction to Quantum Field Theory”, is a pioneering work. To the best of our knowledge it is the first book by a philosopher devoted not only to explaining what quantum field theory is, but to clarifying the conceptual issues and puzzles to which the theory gives rise. As such it is an important book, which we hope will greatly stimulate work in the area as other philosophers and physicists react to it.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Are Rindler Quanta Real? Inequivalent Particle Concepts in Quantum Field Theory.Rob Clifton & Hans Halvorson - 2001 - British Journal for the Philosophy of Science 52 (3):417-470.
    Philosophical reflection on quantum field theory has tended to focus on how it revises our conception of what a particle is. However, there has been relatively little discussion of the threat to the "reality" of particles posed by the possibility of inequivalent quantizations of a classical field theory, i.e., inequivalent representations of the algebra of observables of the field in terms of operators on a Hilbert space. The threat is that each representation embodies its own distinctive conception of what a (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Fields, Particles, and Curvature: Foundations and Philosophical Aspects of Quantum Field Theory in Curved Spacetime.Aristidis Arageorgis - 1995 - Dissertation, University of Pittsburgh
    The physical, mathematical, and philosophical foundations of the quantum theory of free Bose fields in fixed general relativistic spacetimes are examined. It is argued that the theory is logically and mathematically consistent whereas semiclassical prescriptions for incorporating the back-reaction of the quantum field on the geometry lead to inconsistencies. Still, the relations and heuristic value of the semiclassical approach to canonical and covariant schemes of quantum gravity-plus-matter are assessed. Both conventional and rigorous formulations of the theory and of its principal (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • The Hawking Information Loss Paradox: The Anatomy of a Controversy.Gordon Belot, John Earman & Laura Ruetsche - 1999 - British Journal for the Philosophy of Science 50 (2):189-229.
    Stephen Hawking has argued that universes containing evaporating black holes can evolve from pure initial states to mixed final ones. Such evolution is non-unitary and so contravenes fundamental quantum principles on which Hawking's analysis was based. It disables the retrodiction of the universe's initial state from its final one, and portends the time-asymmetry of quantum gravity. Small wonder that Hawking's paradox has met with considerable resistance. Here we use a simple result for C*-algebras to offer an argument for pure-to-mixed state (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • A theory of causality: Causality=interaction (as defined by a suitable quantum field theory). [REVIEW]Adrian Heathcote - 1989 - Erkenntnis 31 (1):77 - 108.
    In this paper I put forward a suggestion for identifying causality in micro-systems with the specific quantum field theoretic interactions that occur in such systems. I first argue — along the lines of general transference theories — that such a physicalistic account is essential to an understanding of causation; I then proceed to sketch the concept of interaction as it occurs in quantum field theory and I do so from both a formal and an informal point of view. Finally, I (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • On Huggett and Weingard's review of an interpretive introduction to quantum field theory: Continuing the discussion.Paul Teller - 1998 - Philosophy of Science 65 (1):151-161.
    Huggett and Weingard's critical review provides an opportunity to continue the interpretive examination of quantum field theory in terms of some specific issues as well as comparison of alternative approaches to the subject. This note recasts their example of inequivalent Fock spaces in an effort to further clarify what it illustrates. Questions are addressed about the role of analogy in developing quantum field theory and about the conflict between formal vs. concrete methods in both physics and its interpretation, continuing the (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Fulling non‐uniqueness and the Unruh effect.Aristidis Arageorgis, John Earman & and Laura Ruetsche - 2003 - Philosophy of Science 70 (1):164-202.
    We discuss the intertwined topics of Fulling non-uniqueness and the Unruh effect. The Fulling quantization, which is in some sense the natural one for an observer uniformly accelerated through Minkowski spacetime to adopt, is often heralded as a quantization of the Klein-Gordon field which is both physically relevant and unitarily inequivalent to the standard Minkowski quantization. We argue that the Fulling and Minkowski quantizations do not constitute a satisfactory example of physically relevant, unitarily inequivalent quantizations, and indicate what it would (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations