Switch to: Citations

Add references

You must login to add references.
  1. The emperor’s new mind.Roger Penrose - 1989 - Oxford University Press.
    Winner of the Wolf Prize for his contribution to our understanding of the universe, Penrose takes on the question of whether artificial intelligence will ever ...
    Download  
     
    Export citation  
     
    Bookmark   581 citations  
  • Ubiquitous Quantum Structure: From Psychology to Finance.Andrei Y. Khrennikov - 2010 - Springer.
    Quantum-like structure is present practically everywhere. Quantum-like models, i.e. models based on the mathematical formalism of quantum mechanics and its generalizations can be successfully applied to cognitive science, psychology, genetics, economics, finances, and game theory. This book is not about quantum mechanics as a physical theory. The short review of quantum postulates is therefore mainly of historical value: quantum mechanics is just the first example of the successful application of non-Kolmogorov probabilities, the first step towards a contextual probabilistic description of (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • A quantum theoretical explanation for probability judgment errors.Jerome R. Busemeyer, Emmanuel M. Pothos, Riccardo Franco & Jennifer S. Trueblood - 2011 - Psychological Review 118 (2):193-218.
    Download  
     
    Export citation  
     
    Bookmark   69 citations  
  • A Foundational Principle for Quantum Mechanics.Anton Zeilinger - 1999 - Foundations of Physics 29 (4):631-643.
    In contrast to the theories of relativity, quantum mechanics is not yet based on a generally accepted conceptual foundation. It is proposed here that the missing principle may be identified through the observation that all knowledge in physics has to be expressed in propositions and that therefore the most elementary system represents the truth value of one proposition, i.e., it carries just one bit of information. Therefore an elementary system can only give a definite result in one specific measurement. The (...)
    Download  
     
    Export citation  
     
    Bookmark   80 citations  
  • A Quantum-Bayesian Route to Quantum-State Space.Christopher A. Fuchs & Rüdiger Schack - 2011 - Foundations of Physics 41 (3):345-356.
    In the quantum-Bayesian approach to quantum foundations, a quantum state is viewed as an expression of an agent’s personalist Bayesian degrees of belief, or probabilities, concerning the results of measurements. These probabilities obey the usual probability rules as required by Dutch-book coherence, but quantum mechanics imposes additional constraints upon them. In this paper, we explore the question of deriving the structure of quantum-state space from a set of assumptions in the spirit of quantum Bayesianism. The starting point is the representation (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Quantum Models of Cognition and Decision.Jerome R. Busemeyer & Peter D. Bruza - 2012 - Cambridge University Press.
    Much of our understanding of human thinking is based on probabilistic models. This innovative book by Jerome R. Busemeyer and Peter D. Bruza argues that, actually, the underlying mathematical structures from quantum theory provide a much better account of human thinking than traditional models. They introduce the foundations for modelling probabilistic-dynamic systems using two aspects of quantum theory. The first, 'contextuality', is a way to understand interference effects found with inferences and decisions under conditions of uncertainty. The second, 'quantum entanglement', (...)
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Quantum coherence in microtubules: A neural basis for emergent consciousness?Stuart R. Hameroff - 1994 - Journal of Consciousness Studies 1 (1):91-118.
    The paper begins with a general introduction to the nature of human consciousness and outlines several different philosophical approaches. A critique of traditional reductionist and dualist positions is offered and it is suggested that consciousness should be viewed as an emergent property of physical systems. However, although consciousness has its origin in distributed brain processes it has macroscopic properties - most notably the `unitary sense of self', non-deterministic free will, and non-algorithmic `intuitive' processing - which can best be described by (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • A Foundational Principle for Quantum Mechanics.Anton Zeilinger - 2019 - In Alberto Cordero (ed.), Philosophers Look at Quantum Mechanics. Springer Verlag.
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • The Emperor’s New Mind: Concerning Computers, Minds, andthe Laws of Physics.Roger Penrose - 1989 - Science and Society 54 (4):484-487.
    Download  
     
    Export citation  
     
    Bookmark   401 citations  
  • Quantum-Like Model for Decision Making Process in Two Players Game: A Non-Kolmogorovian Model.Masanari Asano, Masanori Ohya & Andrei Khrennikov - 2011 - Foundations of Physics 41 (3):538-548.
    In experiments of games, players frequently make choices which are regarded as irrational in game theory. In papers of Khrennikov (Information Dynamics in Cognitive, Psychological and Anomalous Phenomena. Fundamental Theories of Physics, Kluwer Academic, Norwell, 2004; Fuzzy Sets Syst. 155:4–17, 2005; Biosystems 84:225–241, 2006; Found. Phys. 35(10):1655–1693, 2005; in QP-PQ Quantum Probability and White Noise Analysis, vol. XXIV, pp. 105–117, 2009), it was pointed out that statistics collected in such the experiments have “quantum-like” properties, which can not be explained in (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Information Invariance and Quantum Probabilities.Časlav Brukner & Anton Zeilinger - 2009 - Foundations of Physics 39 (7):677-689.
    We consider probabilistic theories in which the most elementary system, a two-dimensional system, contains one bit of information. The bit is assumed to be contained in any complete set of mutually complementary measurements. The requirement of invariance of the information under a continuous change of the set of mutually complementary measurements uniquely singles out a measure of information, which is quadratic in probabilities. The assumption which gives the same scaling of the number of degrees of freedom with the dimension as (...)
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Reading Bohr: physics and philosophy.Arkady Plotnitsky - 2006 - Dordrecht: Springer.
    Reading Bohr: Physics and Philosophy offers a new perspective on Niels Bohr's interpretation of quantum mechanics as complementarity, and on the relationships between physics and philosophy in Bohr's work, which has had momentous significance for our understanding of quantum theory and of the nature of knowledge in general. Philosophically, the book reassesses Bohr's place in the Western philosophical tradition, from Kant and Hegel on. Physically, it reconsiders the main issues at stake in the Bohr-Einstein confrontation and in the ongoing debates (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Non-Kolmogorovian Approach to the Context-Dependent Systems Breaking the Classical Probability Law.Masanari Asano, Irina Basieva, Andrei Khrennikov, Masanori Ohya & Ichiro Yamato - 2013 - Foundations of Physics 43 (7):895-911.
    There exist several phenomena breaking the classical probability laws. The systems related to such phenomena are context-dependent, so that they are adaptive to other systems. In this paper, we present a new mathematical formalism to compute the joint probability distribution for two event-systems by using concepts of the adaptive dynamics and quantum information theory, e.g., quantum channels and liftings. In physics the basic example of the context-dependent phenomena is the famous double-slit experiment. Recently similar examples have been found in biological (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Quantum probabilities as Bayesian probabilities.Carlton M. Caves - 2002 - Physical Review A 65:022305.
    Download  
     
    Export citation  
     
    Bookmark   87 citations