Switch to: Citations

Add references

You must login to add references.
  1. Canonical functions, non-regular ultrafilters and Ulam’s problem on ω1.Oliver Deiser & Dieter Donder - 2003 - Journal of Symbolic Logic 68 (3):713-739.
    Our main results are:Theorem 1. Con implies Con. [In fact equiconsistency holds.]Theorem 3. Con implies Con.Theorem 5. Con ”) implies Con.We start with a discussion of the canonical functions and look at some combinatorial principles. Assuming the domination property of Theorem 1, we use the Ketonen diagram to show that ω2V is a limit of measurable cardinals in Jensen’s core model KMO for measures of order zero. Using related arguments we show that ω2V is a stationary limit of measurable cardinals (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Proper forcing and l(ℝ).Itay Neeman & Jindrich Zapletal - 2001 - Journal of Symbolic Logic 66 (2):801-810.
    We present two ways in which the model L(R) is canonical assuming the existence of large cardinals. We show that the theory of this model, with ordinal parameters, cannot be changed by small forcing; we show further that a set of ordinals in V cannot be added to L(R) by small forcing. The large cardinal needed corresponds to the consistency strength of AD L (R); roughly ω Woodin cardinals.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Absoluteness via resurrection.Giorgio Audrito & Matteo Viale - 2017 - Journal of Mathematical Logic 17 (2):1750005.
    The resurrection axioms are forcing axioms introduced recently by Hamkins and Johnstone, developing on ideas of Chalons and Veličković. We introduce a stronger form of resurrection axioms for a class of forcings Γ and a given ordinal α), and show that RAω implies generic absoluteness for the first-order theory of Hγ+ with respect to forcings in Γ preserving the axiom, where γ = γΓ is a cardinal which depends on Γ. We also prove that the consistency strength of these axioms (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Baumgartnerʼs conjecture and bounded forcing axioms.David Asperó, Sy-David Friedman, Miguel Angel Mota & Marcin Sabok - 2013 - Annals of Pure and Applied Logic 164 (12):1178-1186.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On iterating semiproper preorders.Tadatoshi Miyamoto - 2002 - Journal of Symbolic Logic 67 (4):1431-1468.
    Let T be an $\omega_{1}-Souslin$ tree. We show the property of forcing notions; "is $\lbrace\omega_{1}\rbrace-semi-proper$ and preserves T" is preserved by a new kind of revised countable support iteration of arbitrary length. As an application we have a forcing axiom which is compatible with the existence of an $\omega_{1}-Souslin$ tree for preorders as wide as possible.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Class Forcing in Class Theory.Carolin Antos - 2018 - In Carolin Antos, Sy-David Friedman, Radek Honzik & Claudio Ternullo (eds.), The Hyperuniverse Project and Maximality. Basel, Switzerland: Birkhäuser. pp. 1-16.
    In this article we show that Morse-Kelley class theory provides us with an adequate framework for class forcing. We give a rigorous definition of class forcing in a model \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$$$ \end{document} of MK, the main result being that the Definability Lemma can be proven without restricting the notion of forcing. Furthermore we show under which conditions the axioms are preserved. We conclude by proving that Laver’s Theorem does not hold for (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (2 other versions)Set Theory.Thomas Jech - 1999 - Studia Logica 63 (2):300-300.
    Download  
     
    Export citation  
     
    Bookmark   329 citations  
  • Semiproper forcing axiom implies Martin maximum but not PFA+.Saharon Shelah - 1987 - Journal of Symbolic Logic 52 (2):360-367.
    We prove that MM (Martin maximum) is equivalent (in ZFC) to the older axiom SPFA (semiproper forcing axiom). We also prove that SPFA does not imply SPFA + or even PFA + (using the consistency of a large cardinal).
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Set mapping reflection.Justin Tatch Moore - 2005 - Journal of Mathematical Logic 5 (1):87-97.
    In this note we will discuss a new reflection principle which follows from the Proper Forcing Axiom. The immediate purpose will be to prove that the bounded form of the Proper Forcing Axiom implies both that 2ω = ω2 and that [Formula: see text] satisfies the Axiom of Choice. It will also be demonstrated that this reflection principle implies that □ fails for all regular κ > ω1.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • (1 other version)Bounded Martin's Maximum, weak Erdӧs cardinals, and ψ Ac.David Asperó & Philip D. Welch - 2002 - Journal of Symbolic Logic 67 (3):1141-1152.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Resurrection axioms and uplifting cardinals.Joel David Hamkins & Thomas A. Johnstone - 2014 - Archive for Mathematical Logic 53 (3-4):463-485.
    We introduce the resurrection axioms, a new class of forcing axioms, and the uplifting cardinals, a new large cardinal notion, and prove that various instances of the resurrection axioms are equiconsistent over ZFC with the existence of an uplifting cardinal.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Martin’s maximum revisited.Matteo Viale - 2016 - Archive for Mathematical Logic 55 (1-2):295-317.
    We present several results relating the general theory of the stationary tower forcing developed by Woodin with forcing axioms. In particular we show that, in combination with class many Woodin cardinals, the forcing axiom MM++ makes the Π2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\Pi_2}$$\end{document}-fragment of the theory of Hℵ2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${H_{\aleph_2}}$$\end{document} invariant with respect to stationary set preserving forcings that preserve BMM. We argue that this is a promising generalization to (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations