Switch to: Citations

References in:

A Note on Leibniz’s Argument Against Infinite Wholes

In Essays on Gödel’s Reception of Leibniz, Husserl, and Brouwer. Cham: Springer Verlag. pp. 121-129 (2014)

Add references

You must login to add references.
  1. Introduction to mathematical philosophy.Bertrand Russell - 1919 - New York: Dover Publications.
    Download  
     
    Export citation  
     
    Bookmark   395 citations  
  • Infinity.José A. Benardete - 1964 - Oxford,: Clarendon Press.
    Download  
     
    Export citation  
     
    Bookmark   74 citations  
  • The Philosophy of Bertrand Russell.Kurt Gödel - 1944 - Northwestern University Press.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Measuring the Size of Infinite Collections of Natural Numbers: Was Cantor’s Theory of Infinite Number Inevitable?Paolo Mancosu - 2009 - Review of Symbolic Logic 2 (4):612-646.
    Cantor’s theory of cardinal numbers offers a way to generalize arithmetic from finite sets to infinite sets using the notion of one-to-one association between two sets. As is well known, all countable infinite sets have the same ‘size’ in this account, namely that of the cardinality of the natural numbers. However, throughout the history of reflections on infinity another powerful intuition has played a major role: if a collectionAis properly included in a collectionBthen the ‘size’ ofAshould be less than the (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • (1 other version)La Logique de Leibniz.Louis Couturat - 1901 - Revue de Métaphysique et de Morale 9 (5):6-7.
    Download  
     
    Export citation  
     
    Bookmark   62 citations  
  • Leibniz on mathematics and the actually infinite division of matter.Samuel Levey - 1998 - Philosophical Review 107 (1):49-96.
    Mathematician and philosopher Hermann Weyl had our subject dead to rights.
    Download  
     
    Export citation  
     
    Bookmark   38 citations  
  • An Aristotelian notion of size.Vieri Benci, Mauro Di Nasso & Marco Forti - 2006 - Annals of Pure and Applied Logic 143 (1-3):43-53.
    The naïve idea of “size” for collections seems to obey both Aristotle’s Principle: “the whole is greater than its parts” and Cantor’s Principle: “1-to-1 correspondences preserve size”. Notoriously, Aristotle’s and Cantor’s principles are incompatible for infinite collections. Cantor’s theory of cardinalities weakens the former principle to “the part is not greater than the whole”, but the outcoming cardinal arithmetic is very unusual. It does not allow for inverse operations, and so there is no direct way of introducing infinitesimal numbers. Here (...)
    Download  
     
    Export citation  
     
    Bookmark   27 citations  
  • (1 other version)Gesammelte Abhandlungen: Mathematischen und Philosophischen Inhalts.Georg Cantor, Richard Dedekind & Abraham Adolf Fraenkel - 1932 - Springer.
    Dieser Buchtitel ist Teil des Digitalisierungsprojekts Springer Book Archives mit Publikationen, die seit den Anfängen des Verlags von 1842 erschienen sind. Der Verlag stellt mit diesem Archiv Quellen für die historische wie auch die disziplingeschichtliche Forschung zur Verfügung, die jeweils im historischen Kontext betrachtet werden müssen. Dieser Titel erschien in der Zeit vor 1945 und wird daher in seiner zeittypischen politisch-ideologischen Ausrichtung vom Verlag nicht beworben.
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • Leibniz's mathematical argument against a soul of the world.Gregory Brown - 2005 - British Journal for the History of Philosophy 13 (3):449 – 488.
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Leibniz's syllogistico-propositional calculus.Hector-Neri Casta Neda - 1976 - Notre Dame Journal of Formal Logic 17 (4):481-500.
    Download  
     
    Export citation  
     
    Bookmark   7 citations