Switch to: References

Add citations

You must login to add citations.
  1. We hold these truths to be self-evident: But what do we mean by that?: We hold these truths to be self-evident.Stewart Shapiro - 2009 - Review of Symbolic Logic 2 (1):175-207.
    At the beginning of Die Grundlagen der Arithmetik [1884], Frege observes that “it is in the nature of mathematics to prefer proof, where proof is possible”. This, of course, is true, but thinkers differ on why it is that mathematicians prefer proof. And what of propositions for which no proof is possible? What of axioms? This talk explores various notions of self-evidence, and the role they play in various foundational systems, notably those of Frege and Zermelo. I argue that both (...)
    Download  
     
    Export citation  
     
    Bookmark   26 citations  
  • (1 other version)Gödel’s Cantorianism.Claudio Ternullo - 2015 - In E.-M. Engelen (ed.), Kurt Gödel: Philosopher-Scientist. Presses Universitaires de Provence. pp. 417-446.
    Gödel’s philosophical conceptions bear striking similarities to Cantor’s. Although there is no conclusive evidence that Gödel deliberately used or adhered to Cantor’s views, one can successfully reconstruct and see his “Cantorianism” at work in many parts of his thought. In this paper, I aim to describe the most prominent conceptual intersections between Cantor’s and Gödel’s thought, particularly on such matters as the nature and existence of mathematical entities (sets), concepts, Platonism, the Absolute Infinite, the progress and inexhaustibility of mathematics.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • In search of $$\aleph _{0}$$ ℵ 0 : how infinity can be created.Markus Pantsar - 2015 - Synthese 192 (8):2489-2511.
    In this paper I develop a philosophical account of actual mathematical infinity that does not demand ontologically or epistemologically problematic assumptions. The account is based on a simple metaphor in which we think of indefinitely continuing processes as defining objects. It is shown that such a metaphor is valid in terms of mathematical practice, as well as in line with empirical data on arithmetical cognition.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Note on Absolute Provability and Cantorian Comprehension.Holger A. Leuz - manuscript
    We will explicate Cantor’s principle of set existence using the Gödelian intensional notion of absolute provability and John Burgess’ plural logical concept of set formation. From this Cantorian Comprehension principle we will derive a conditional result about the question whether there are any absolutely unprovable mathematical truths. Finally, we will discuss the philosophical significance of the conditional result.
    Download  
     
    Export citation  
     
    Bookmark  
  • Peano e la filosofia della matematica.Enrico Pasini - 2004 - In Elisa Gallo - Livia Giacardi - Clara Silvia Roero (ed.), Conferenze E Seminari 2003-2004. Associazione Subalpina Mathesis. pp. 203-220.
    It is well known that Peano had a reluctant attitude towards philosophy, including philosophy of mathematics. Some scholars have suggested the existence of an 'implicit' philosophy, without being able to describe it. In this paper a first attempt is done to reconstruct, if not a general philosophy of mathematics, at least Peano' epistemology of mathematics and its relation to contemporary positions.
    Download  
     
    Export citation  
     
    Bookmark  
  • Intuition and Its Object.Kai Hauser - 2015 - Axiomathes 25 (3):253-281.
    The view that mathematics deals with ideal objects to which we have epistemic access by a kind of perception has troubled many thinkers. Using ideas from Husserl’s phenomenology, I will take a different look at these matters. The upshot of this approach is that there are non-material objects and that they can be recognized in a process very closely related to sense perception. In fact, the perception of physical objects may be regarded as a special case of this more universal (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Exploring Categorical Structuralism.C. Mclarty - 2004 - Philosophia Mathematica 12 (1):37-53.
    Hellman [2003] raises interesting challenges to categorical structuralism. He starts citing Awodey [1996] which, as Hellman sees, is not intended as a foundation for mathematics. It offers a structuralist framework which could denned in any of many different foundations. But Hellman says Awodey's work is 'naturally viewed in the context of Mac Lane's repeated claim that category theory provides an autonomous foundation for mathematics as an alternative to set theory' (p. 129). Most of Hellman's paper 'scrutinizes the formulation of category (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Conceptions and paradoxes of sets.G. Aldo Antonelli - 1999 - Philosophia Mathematica 7 (2):136-163.
    This paper is concerned with the way different axiom systems for set theory can be justified by appeal to such intuitions as limitation of size, predicativity, stratification, etc. While none of the different conceptions historically resulting from the impetus to provide a solution to the paradoxes turns out to rest on an intuition providing an unshakeable foundation,'each supplies a picture of the set-theoretic universe that is both useful and internally well motivated. The same is true of more recently proposed axiom (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • 26 Potential Infinity, Paradox, and the Mind of God: Historical Survey.Samuel Levey, Øystein Linnebo & Stewart Shapiro - 2024 - In Mirosław Szatkowski (ed.), Ontology of Divinity. Boston: De Gruyter. pp. 531-560.
    Download  
     
    Export citation  
     
    Bookmark  
  • Aristotelian Potential Infinity.Anne Newstead - manuscript
    Online philosophy seminar notes, for virtual conference on the Aristotelian philosophy of mathematics, hosted by University of Geneva (organiser Ryan Miller), June 15, 2023.
    Download  
     
    Export citation  
     
    Bookmark  
  • Absolute Infinity, Knowledge, and Divinity in the Thought of Cusanus and Cantor (ABSTRACT ONLY).Anne Newstead - 2024 - In Mirosław Szatkowski (ed.), Ontology of Divinity. Boston: De Gruyter. pp. 561-580.
    Renaissance philosopher, mathematician, and theologian Nicholas of Cusa (1401-1464) said that there is no proportion between the finite mind and the infinite. He is fond of saying reason cannot fully comprehend the infinite. That our best hope for attaining a vision and understanding of infinite things is by mathematics and by the use of contemplating symbols, which help us grasp "the absolute infinite". By the late 19th century, there is a decisive intervention in mathematics and its philosophy: the philosophical mathematician (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • FILOZOFIJA LOGIKE.Nijaz Ibrulj - 1999 - Sarajevo: Sarajevo Publishing.
    Aktivnost integracije i distribucije prožima cjelokupni čovjekov jezik, mišljenje i djelovanje; njegov praktični i teorijski um, uz pomoć malog broja operacija (konjunkcija, negacija, kvantifikacija) koje čine logičke konstante, sabire i razdjeljuje varijabilne elemente jezika, svijeta i mišljenja u beskonačne konačnosti (skupovi, klase, relacije, atributi) u kojima se koreliraju realne stimulacije i virtualne simulacije, čijom se konstrukcijom, rekonstrukcijom i dekonstrukcijom formiraju i transformiraju "dobro uređene formule" jezičko-gramatičkih i mentalno-psiholoških struktura koje se u svijetu saznanja imenuju pojmom svijeta, pojmom jezika, pojmom duha. (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Georg Cantor’s Ordinals, Absolute Infinity & Transparent Proof of the Well-Ordering Theorem.Hermann G. W. Burchard - 2019 - Philosophy Study 9 (8).
    Georg Cantor's absolute infinity, the paradoxical Burali-Forti class Ω of all ordinals, is a monstrous non-entity for which being called a "class" is an undeserved dignity. This must be the ultimate vexation for mathematical philosophers who hold on to some residual sense of realism in set theory. By careful use of Ω, we can rescue Georg Cantor's 1899 "proof" sketch of the Well-Ordering Theorem––being generous, considering his declining health. We take the contrapositive of Cantor's suggestion and add Zermelo's choice function. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Natural Numbers and Infinitesimals: A Discussion between Benno Kerry and Georg Cantor.Carlo Proietti - 2008 - History and Philosophy of Logic 29 (4):343-359.
    During the first months of 1887, while completing the drafts of his Mitteilungen zur Lehre vom Transfiniten, Georg Cantor maintained a continuous correspondence with Benno Kerry. Their exchange essentially concerned two main topics in the philosophy of mathematics, namely, (a) the concept of natural number and (b) the infinitesimals. Cantor's and Kerry's positions turned out to be irreconcilable, mostly because of Kerry's irremediably psychologistic outlook, according to Cantor at least. In this study, I will examine and reconstruct the main points (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Ontology of Divinity.Mirosław Szatkowski (ed.) - 2024 - Boston: De Gruyter.
    This volume announces a new era in the philosophy of God. Many of its contributions work to create stronger links between the philosophy of God, on the one hand, and mathematics or metamathematics, on the other hand. It is about not only the possibilities of applying mathematics or metamathematics to questions about God, but also the reverse question: Does the philosophy of God have anything to offer mathematics or metamathematics? The remaining contributions tackle stereotypes in the philosophy of religion. The (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Epistemology Versus Ontology: Essays on the Philosophy and Foundations of Mathematics in Honour of Per Martin-Löf.Peter Dybjer, Sten Lindström, Erik Palmgren & Göran Sundholm (eds.) - 2012 - Dordrecht, Netherland: Springer.
    This book brings together philosophers, mathematicians and logicians to penetrate important problems in the philosophy and foundations of mathematics. In philosophy, one has been concerned with the opposition between constructivism and classical mathematics and the different ontological and epistemological views that are reflected in this opposition. The dominant foundational framework for current mathematics is classical logic and set theory with the axiom of choice. This framework is, however, laden with philosophical difficulties. One important alternative foundational programme that is actively pursued (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Properties and a Grounding Principle.Noel Saenz - 2023 - Inquiry: An Interdisciplinary Journal of Philosophy 66 (10):2024-2036.
    In this paper, I advance a lesser known counterfactual principle of grounding in a new kind of way by appealing to properties and the work they do. I then show that this new way of arguing for this principle is superior to another way, describe some of the work this principle can do, defend my use of this principle, and conclude with remarks on why principles like it are needed.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • ¿Es necesario el Axioma de Zermelo para comprender la teoría de la medida?Carmen Martínez-Adame - 2013 - Metatheoria – Revista de Filosofía E Historia de la Ciencia 3:37--64.
    Download  
     
    Export citation  
     
    Bookmark  
  • Kant on the possibilities of mathematics and the scope and limits of logic.Frode Kjosavik - 2022 - Inquiry: An Interdisciplinary Journal of Philosophy 65 (6):683-706.
    ABSTRACT I suggest how a broadly Kantian critique of classical logic might spring from reflections on constructibility conditions. According to Kant, mathematics is concerned with objects that are given through ‘arbitrary synthesis,’ in the form of ‘constructions of concepts’ in the medium of ‘pure intuition.’ Logic, by contrast, is narrowly constrained – it has no objects of its own and is fixed by the very forms of thought. That is why there is not much room for developments within logic, as (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The influence of Spinoza’s concept of infinity on Cantor’s set theory.Paolo Bussotti & Christian Tapp - 2009 - Studies in History and Philosophy of Science Part A 40 (1):25-35.
    Georg Cantor, the founder of set theory, cared much about a philosophical foundation for his theory of infinite numbers. To that end, he studied intensively the works of Baruch de Spinoza. In the paper, we survey the influence of Spinozean thoughts onto Cantor’s; we discuss Spinoza’s philosophy of infinity, as it is contained in his Ethics; and we attempt to draw a parallel between Spinoza’s and Cantor’s ontologies. Our conclusion is that the study of Spinoza provides deepening insights into Cantor’s (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Consistency, Models, and Soundness.Matthias Schirn - 2010 - Axiomathes 20 (2):153-207.
    This essay consists of two parts. In the first part, I focus my attention on the remarks that Frege makes on consistency when he sets about criticizing the method of creating new numbers through definition or abstraction. This gives me the opportunity to comment also a little on H. Hankel, J. Thomae—Frege’s main targets when he comes to criticize “formal theories of arithmetic” in Die Grundlagen der Arithmetik (1884) and the second volume of Grundgesetze der Arithmetik (1903)—G. Cantor, L. E. (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Frege, August Bebel and the Return of Alsace-Lorraine: The dating of the distinction between Sinn and Bedeutung.Göran Sundholm - 2001 - History and Philosophy of Logic 22 (2):57-73.
    A detailed chronology is offered for the writing of Frege's central philosophical essays from the early 1890s. Particular attention is given to (the distinction between) Sinn and Bedeutung. Suggestions are made as to the origin of the examples concerning the Morning Star/Evening Star and August Bebel's views on the return of Alsace-Lorraine. Likely sources are offered for Frege's use of the terms Bestimmungsweise, Art des Gegebenseins and Sinn und Bedeutung.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Developing arithmetic in set theory without infinity: some historical remarks.Charles Parsons - 1987 - History and Philosophy of Logic 8 (2):201-213.
    In this paper some of the history of the development of arithmetic in set theory is traced, particularly with reference to the problem of avoiding the assumption of an infinite set. Although the standard method of singling out a sequence of sets to be the natural numbers goes back to Zermelo, its development was more tortuous than is generally believed. We consider the development in the light of three desiderata for a solution and argue that they can probably not all (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • The Rise of non-Archimedean Mathematics and the Roots of a Misconception I: The Emergence of non-Archimedean Systems of Magnitudes.Philip Ehrlich - 2006 - Archive for History of Exact Sciences 60 (1):1-121.
    Download  
     
    Export citation  
     
    Bookmark   49 citations  
  • Cantor, God, and Inconsistent Multiplicities.Aaron R. Thomas-Bolduc - 2016 - Studies in Logic, Grammar and Rhetoric 44 (1):133-146.
    The importance of Georg Cantor’s religious convictions is often neglected in discussions of his mathematics and metaphysics. Herein I argue, pace Jan ́e (1995), that due to the importance of Christianity to Cantor, he would have never thought of absolutely infinite collections/inconsistent multiplicities,as being merely potential, or as being purely mathematical entities. I begin by considering and rejecting two arguments due to Ignacio Jan ́e based on letters to Hilbert and the generating principles for ordinals, respectively, showing that my reading (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Kant’s Theory of Arithmetic: A Constructive Approach?Kristina Engelhard & Peter Mittelstaedt - 2008 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 39 (2):245-271.
    Kant's theory of arithmetic is not only a central element in his theoretical philosophy but also an important contribution to the philosophy of arithmetic as such. However, modern mathematics, especially non-Euclidean geometry, has placed much pressure on Kant's theory of mathematics. But objections against his theory of geometry do not necessarily correspond to arguments against his theory of arithmetic and algebra. The goal of this article is to show that at least some important details in Kant's theory of arithmetic can (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Against Set Theory.Peter Simons - 2005 - In Johann C. Marek Maria E. Reicher (ed.), Experience and Analysis. HPT&ÖBV. pp. 143--152.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • (1 other version)Infinite Regress Arguments.Anna-Sofia Maurin - 2013 - In Christer Svennerlind, Almäng Jan & Rögnvaldur Ingthorsson (eds.), Johanssonian Investigations: Essays in Honour of Ingvar Johansson on His Seventieth Birthday. Frankfurt: Ontos Verlag. pp. 5--421.
    According to Johansson (2009: 22) an infinite regress is vicious just in case “what comes first [in the regress-order] is for its definition dependent on what comes afterwards.” Given a few qualifications (to be spelled out below (section 3)), I agree. Again according to Johansson (ibid.), one of the consequences of accepting this way of distinguishing vicious from benign regresses is that the so-called Russellian Resemblance Regress (RRR), if generated in a one-category trope-theoretical framework, is vicious and that, therefore, the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Hilbert, logicism, and mathematical existence.José Ferreirós - 2009 - Synthese 170 (1):33 - 70.
    David Hilbert’s early foundational views, especially those corresponding to the 1890s, are analysed here. I consider strong evidence for the fact that Hilbert was a logicist at that time, following upon Dedekind’s footsteps in his understanding of pure mathematics. This insight makes it possible to throw new light on the evolution of Hilbert’s foundational ideas, including his early contributions to the foundations of geometry and the real number system. The context of Dedekind-style logicism makes it possible to offer a new (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • The early development of set theory.José Ferreirós - unknown - Stanford Encyclopedia of Philosophy.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The role of the absolute infinite in Cantor's conception of set.Ignacio Jané - 1995 - Erkenntnis 42 (3):375 - 402.
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • German Idealism and the Origins of Pure Mathematics: Riemann, Dedekind, Cantor.Ehsan Karimi Torshizi - 2021 - Journal of Philosophical Investigations 15 (36):171-188.
    When it comes to the relation of modern mathematics and philosophy, most people tend to think of the three major schools of thought—i.e. logicism, formalism, and intuitionism—that emerged as profound researches on the foundations and nature of mathematics in the beginning of the 20th century and have shaped the dominant discourse of an autonomous discipline of analytic philosophy, generally known under the rubric of “philosophy of mathematics” since then. What has been completely disregarded by these philosophical attitudes, these foundational researches (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • 1918-2018: Cantor and infinity in today’s high school.Carlo Toffalori - 2020 - Science and Philosophy 8 (1):119-129.
    In the first centenary of Cantor's death, we discuss how to introduce his life, his works and his theories about mathematical infinity to today's students. Keywords: proper and improper infinite, cardinal number, countable set, continuum, continuum hypothesis. Sunto Nel primo centenario della scomparsa di Cantor, si discute come presentare la sua vita, le sue opere e le sue teorie sull’infinito agli studenti di oggi. Parole chiave: infinito proprio e improprio, numero cardinale, numerabile, continuo, ipotesi del continuo.
    Download  
     
    Export citation  
     
    Bookmark  
  • Relative consistency and accessible domains.Wilfried Sieg - 1990 - Synthese 84 (2):259 - 297.
    Wilfred Sieg. Relative Consistency and Accesible Domains.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Essential Properties - Analysis and Extension.Nathan Wildman - 2011 - Dissertation, Cambridge
    Download  
     
    Export citation  
     
    Bookmark  
  • Frege's Approach to the Foundations of Analysis (1874–1903).Matthias Schirn - 2013 - History and Philosophy of Logic 34 (3):266-292.
    The concept of quantity (Größe) plays a key role in Frege's theory of real numbers. Typically enough, he refers to this theory as ?theory of quantity? (?Größenlehre?) in the second volume of his opus magnum Grundgesetze der Arithmetik (Frege 1903). In this essay, I deal, in a critical way, with Frege's treatment of the concept of quantity and his approach to analysis from the beginning of his academic career until Frege 1903. I begin with a few introductory remarks. In Section (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • What is a Line?D. F. M. Strauss - 2014 - Axiomathes 24 (2):181-205.
    Since the discovery of incommensurability in ancient Greece, arithmeticism and geometricism constantly switched roles. After ninetieth century arithmeticism Frege eventually returned to the view that mathematics is really entirely geometry. Yet Poincaré, Brouwer, Weyl and Bernays are mathematicians opposed to the explication of the continuum purely in terms of the discrete. At the beginning of the twenty-first century ‘continuum theorists’ in France (Longo, Thom and others) believe that the continuum precedes the discrete. In addition the last 50 years witnessed the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Conceptual Metaphors and Mathematical Practice: On Cognitive Studies of Historical Developments in Mathematics.Dirk Schlimm - 2013 - Topics in Cognitive Science 5 (2):283-298.
    This article looks at recent work in cognitive science on mathematical cognition from the perspective of history and philosophy of mathematical practice. The discussion is focused on the work of Lakoff and Núñez, because this is the first comprehensive account of mathematical cognition that also addresses advanced mathematics and its history. Building on a distinction between mathematics as it is presented in textbooks and as it presents itself to the researcher, it is argued that the focus of cognitive analyses of (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The logical enquiry into truth 1.Maria J. Frapolli - 1996 - History and Philosophy of Logic 17 (1-2):179-197.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Towards a theory of mathematical research programmes (II).Michael Hallett - 1979 - British Journal for the Philosophy of Science 30 (2):135-159.
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Some recent essays in the history of the philosophy of mathematics: A critical review. [REVIEW]William W. Tait - 1993 - Synthese 96 (2):293 - 331.
    Download  
     
    Export citation  
     
    Bookmark  
  • What are sets and what are they for?Alex Oliver & Timothy Smiley - 2006 - Philosophical Perspectives 20 (1):123–155.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • (1 other version)A Note on Leibniz's Argument Against Infinite Wholes.Mark van Atten - 2011 - British Journal for the History of Philosophy 19 (1):121-129.
    Leibniz had a well-known argument against the existence of infinite wholes that is based on the part-whole axiom: the whole is greater than the part. The refutation of this argument by Russell and others is equally well known. In this note, I argue (against positions recently defended by Arthur, Breger, and Brown) for the following three claims: (1) Leibniz himself had all the means to devise and accept this refutation; (2) This refutation does not presuppose the consistency of Cantorian set (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Cantor on Frege's Foundations of Arithmetic : Cantor's 1885 Review of Frege's Die Grundlagen der Arithmetik.Marcus Rossberg & Philip A. Ebert - 2009 - History and Philosophy of Logic 30 (4):341-348.
    In 1885, Georg Cantor published his review of Gottlob Frege's Grundlagen der Arithmetik . In this essay, we provide its first English translation together with an introductory note. We also provide a translation of a note by Ernst Zermelo on Cantor's review, and a new translation of Frege's brief response to Cantor. In recent years, it has become philosophical folklore that Cantor's 1885 review of Frege's Grundlagen already contained a warning to Frege. This warning is said to concern the defectiveness (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Historians and Philosophers of Logic: Are They Compatible? The Bolzano-Weierstrass Theorem as a Case Study.Gregory H. Moore - 1999 - History and Philosophy of Logic 20 (3-4):169-180.
    This paper combines personal reminiscences of the philosopher John Corcoran with a discussion of certain conflicts between historians of logic and philosophers of logic. Some mistaken claims about the history of the Bolzano-Weierstrass Theorem are analyzed in detail and corrected.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • (1 other version)Infinitesimal Probabilities.Vieri Benci, Leon Horsten & Sylvia Wenmackers - 2016 - British Journal for the Philosophy of Science 69 (2):509-552.
    Non-Archimedean probability functions allow us to combine regularity with perfect additivity. We discuss the philosophical motivation for a particular choice of axioms for a non-Archimedean probability theory and answer some philosophical objections that have been raised against infinitesimal probabilities in general. _1_ Introduction _2_ The Limits of Classical Probability Theory _2.1_ Classical probability functions _2.2_ Limitations _2.3_ Infinitesimals to the rescue? _3_ NAP Theory _3.1_ First four axioms of NAP _3.2_ Continuity and conditional probability _3.3_ The final axiom of NAP (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Continuum, name and paradox.Vojtěch Kolman - 2010 - Synthese 175 (3):351 - 367.
    The article deals with Cantor's argument for the non-denumerability of reals somewhat in the spirit of Lakatos' logic of mathematical discovery. At the outset Cantor's proof is compared with some other famous proofs such as Dedekind's recursion theorem, showing that rather than usual proofs they are resolutions to do things differently. Based on this I argue that there are "ontologically" safer ways of developing the diagonal argument into a full-fledged theory of continuum, concluding eventually that famous semantic paradoxes based on (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Hao Wang as philosopher and interpreter of gödel.Charles Parsons - 1998 - Philosophia Mathematica 6 (1):3-24.
    The paper undertakes to characterize Hao Wang's style, convictions, and method as a philosopher, centering on his most important philosophical work From Mathematics to Philosophy, 1974. The descriptive character of Wang's characteristic method is emphasized. Some specific achievements are discussed: his analyses of the concept of set, his discussion, in connection with setting forth Gödel's views, of minds and machines, and his concept of ‘analytic empiricism’ used to criticize Carnap and Quine. Wang's work as interpreter of Gödel's thought and the (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Justification for the Quantificational Hume Principle.Chris Scambler - 2019 - Erkenntnis 86 (5):1293-1308.
    In recent work Bruno Whittle has presented a new challenge to the Cantorian idea that there are different infinite cardinalities. Most challenges of this kind have tended to focus on the status of the axioms of standard set theory; Whittle’s is different in that he focuses on the connection between standard set theory and intuitive concepts related to cardinality. Specifically, Whittle argues we are not in a position to know a principle I call the Quantificational Hume Principle, which connects the (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Główne koncepcje i kierunki filozofii matematyki XX wieku.Roman Murawski - 2003 - Zagadnienia Filozoficzne W Nauce 33.
    Download  
     
    Export citation  
     
    Bookmark   1 citation