Switch to: Citations

Add references

You must login to add references.
  1. Riesz representation theorem, Borel measures and subsystems of second-order arithmetic.Xiaokang Yu - 1993 - Annals of Pure and Applied Logic 59 (1):65-78.
    Yu, X., Riesz representation theorem, Borel measures and subsystems of second-order arithmetic, Annals of Pure and Applied Logic 59 65-78. Formalized concept of finite Borel measures is developed in the language of second-order arithmetic. Formalization of the Riesz representation theorem is proved to be equivalent to arithmetical comprehension. Codes of Borel sets of complete separable metric spaces are defined and proved to be meaningful in the subsystem ATR0. Arithmetical transfinite recursion is enough to prove the measurability of Borel sets for (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Subsystems of Second Order Arithmetic.Stephen G. Simpson - 1999 - Studia Logica 77 (1):129-129.
    Download  
     
    Export citation  
     
    Bookmark   237 citations  
  • Factorization of polynomials and °1 induction.S. G. Simpson - 1986 - Annals of Pure and Applied Logic 31:289.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Computability and Randomness.André Nies - 2008 - Oxford, England: Oxford University Press UK.
    The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • Lebesgue Convergence Theorems and Reverse Mathematics.Xiaokang Yu - 1994 - Mathematical Logic Quarterly 40 (1):1-13.
    Concepts of L1 space, integrable functions and integrals are formalized in weak subsystems of second order arithmetic. They are discussed especially in relation with the combinatorial principle WWKL (weak-weak König's lemma and arithmetical comprehension. Lebesgue dominated convergence theorem is proved to be equivalent to arithmetical comprehension. A weak version of Lebesgue monotone convergence theorem is proved to be equivalent to weak-weak König's lemma.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Subsystems of Second Order Arithmetic.Stephen George Simpson - 1998 - Springer Verlag.
    Stephen George Simpson. with definition 1.2.3 and the discussion following it. For example, taking 90(n) to be the formula n §E Y, we have an instance of comprehension, VYEIXVn(n€X<—>n¢Y), asserting that for any given set Y there exists a ...
    Download  
     
    Export citation  
     
    Bookmark   131 citations  
  • Measure theory and weak König's lemma.Xiaokang Yu & Stephen G. Simpson - 1990 - Archive for Mathematical Logic 30 (3):171-180.
    We develop measure theory in the context of subsystems of second order arithmetic with restricted induction. We introduce a combinatorial principleWWKL (weak-weak König's lemma) and prove that it is strictly weaker thanWKL (weak König's lemma). We show thatWWKL is equivalent to a formal version of the statement that Lebesgue measure is countably additive on open sets. We also show thatWWKL is equivalent to a formal version of the statement that any Borel measure on a compact metric space is countably additive (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Mass problems and measure-theoretic regularity.Stephen G. Simpson - 2009 - Bulletin of Symbolic Logic 15 (4):385-409.
    A well known fact is that every Lebesgue measurable set is regular, i.e., it includes an F$_{\sigma}$ set of the same measure. We analyze this fact from a metamathematical or foundational standpoint. We study a family of Muchnik degrees corresponding to measure-theoretic regularity at all levels of the effective Borel hierarchy. We prove some new results concerning Nies's notion of LR-reducibility. We build some $\omega$-models of RCA$_0$which are relevant for the reverse mathematics of measure-theoretic regularity.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Uniform Almost Everywhere Domination.Peter Cholak, Noam Greenberg & Joseph S. Miller - 2006 - Journal of Symbolic Logic 71 (3):1057 - 1072.
    We explore the interaction between Lebesgue measure and dominating functions. We show, via both a priority construction and a forcing construction, that there is a function of incomplete degree that dominates almost all degrees. This answers a question of Dobrinen and Simpson, who showed that such functions are related to the proof-theoretic strength of the regularity of Lebesgue measure for Gδ sets. Our constructions essentially settle the reverse mathematical classification of this principle.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • The Strength of the Rainbow Ramsey Theorem.Barbara F. Csima & Joseph R. Mileti - 2009 - Journal of Symbolic Logic 74 (4):1310 - 1324.
    The Rainbow Ramsey Theorem is essentially an "anti-Ramsey" theorem which states that certain types of colorings must be injective on a large subset (rather than constant on a large subset). Surprisingly, this version follows easily from Ramsey's Theorem, even in the weak system RCA₀ of reverse mathematics. We answer the question of the converse implication for pairs, showing that the Rainbow Ramsey Theorem for pairs is in fact strictly weaker than Ramsey's Theorem for pairs over RCA₀. The separation involves techniques (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations