Switch to: Citations

Add references

You must login to add references.
  1. Are Rindler Quanta Real? Inequivalent Particle Concepts in Quantum Field Theory.Rob Clifton & Hans Halvorson - 2001 - British Journal for the Philosophy of Science 52 (3):417-470.
    Philosophical reflection on quantum field theory has tended to focus on how it revises our conception of what a particle is. However, there has been relatively little discussion of the threat to the "reality" of particles posed by the possibility of inequivalent quantizations of a classical field theory, i.e., inequivalent representations of the algebra of observables of the field in terms of operators on a Hilbert space. The threat is that each representation embodies its own distinctive conception of what a (...)
    Download  
     
    Export citation  
     
    Bookmark   72 citations  
  • Against Field Interpretations of Quantum Field Theory.David John Baker - 2009 - British Journal for the Philosophy of Science 60 (3):585-609.
    I examine some problems standing in the way of a successful `field interpretation' of quantum field theory. The most popular extant proposal depends on the Hilbert space of `wavefunctionals.' But since wavefunctional space is unitarily equivalent to many-particle Fock space, two of the most powerful arguments against particle interpretations also undermine this form of field interpretation. IntroductionField Interpretations and Field OperatorsThe Wavefunctional InterpretationFields and Inequivalent Representations 4.1. The Rindler representation 4.2. Spontaneous symmetry breaking 4.3. Coherent representations The Fate of Fields (...)
    Download  
     
    Export citation  
     
    Bookmark   61 citations  
  • Fulling non‐uniqueness and the Unruh effect.Aristidis Arageorgis, John Earman & and Laura Ruetsche - 2003 - Philosophy of Science 70 (1):164-202.
    We discuss the intertwined topics of Fulling non-uniqueness and the Unruh effect. The Fulling quantization, which is in some sense the natural one for an observer uniformly accelerated through Minkowski spacetime to adopt, is often heralded as a quantization of the Klein-Gordon field which is both physically relevant and unitarily inequivalent to the standard Minkowski quantization. We argue that the Fulling and Minkowski quantizations do not constitute a satisfactory example of physically relevant, unitarily inequivalent quantizations, and indicate what it would (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Fulling Non‐uniqueness and the Unruh Effect: A Primer on Some Aspects of Quantum Field Theory.Aristidis Arageorgis, John Earman & Laura Ruetsche - 2003 - Philosophy of Science 70 (1):164-202.
    We discuss the intertwined topics of Fulling non‐uniqueness and the Unruh effect. The Fulling quantization, which is in some sense the natural one for an observer uniformly accelerated through Minkowski spacetime to adopt, is often heralded as a quantization of the Klein‐Gordon field which is both physically relevant and unitarily inequivalent to the standard Minkowski quantization. We argue that the Fulling and Minkowski quantizations do not constitute a satisfactory example of physically relevant, unitarily inequivalent quantizations, and indicate what it would (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Substance, relations, and arguments about the nature of space-time.Paul Teller - 1991 - Philosophical Review 100 (3):363-397.
    Download  
     
    Export citation  
     
    Bookmark   35 citations  
  • Interpreting quantum field theory.Laura Ruetsche - 2002 - Philosophy of Science 69 (2):348-378.
    The availability of unitarily inequivalent representations of the canonical commutation relations constituting a quantization of a classical field theory raises questions about how to formulate and pursue quantum field theory. In a minimally technical way, I explain how these questions arise and how advocates of the Hilbert space and of the algebraic approaches to quantum theory might answer them. Where these answers differ, I sketch considerations for and against each approach, as well as considerations which might temper their apparent rivalry.
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • Johnny’s So Long at the Ferromagnet.Laura Ruetsche - 2006 - Philosophy of Science 73 (5):473-486.
    Starting from the standard quantum formalism for a single spin 1/2 system (e.g., an electron), this essay develops a model rich enough not only to afford an explication of symmetry breaking but also to frame questions about how to circumscribe physical possibility on behalf of theories that countenance symmetry breaking.
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • A matter of degree: Putting unitary inequivalence to work.Laura Ruetsche - 2003 - Philosophy of Science 70 (5):1329-1342.
    If a classical system has infinitely many degrees of freedom, its Hamiltonian quantization need not be unique up to unitary equivalence. I sketch different approaches (Hilbert space and algebraic) to understanding the content of quantum theories in light of this non‐uniqueness, and suggest that neither approach suffices to support explanatory aspirations encountered in the thermodynamic limit of quantum statistical mechanics.
    Download  
     
    Export citation  
     
    Bookmark   36 citations  
  • Reflections on parity nonconservation.Nick Huggett - 2000 - Philosophy of Science 67 (2):219-241.
    This paper considers the implications for the relational-substantival debate of observations of parity nonconservation in weak interactions, a much neglected topic. It is argued that 'geometric proofs' of absolute space, first proposed by Kant (1768), fail, but that parity violating laws allow 'mechanical proofs', like Newton's laws. Parity violating laws are explained and arguments analogous to those of Newton's Scholium are constructed to show that they require absolute spacetime structure--namely, an orientation--as Newtonian mechanics requires affine structure. Finally, it is considered (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • The Metaphysics of Space-Time Substantivalism.Carl Hoefer - 1996 - Journal of Philosophy 93 (1):5-27.
    Download  
     
    Export citation  
     
    Bookmark   119 citations  
  • Kant's hands and Earman's pions: Chirality arguments for substantival space.Carl Hoefer - 2000 - International Studies in the Philosophy of Science 14 (3):237 – 256.
    This paper outlines a new interpretation of an argument of Kant's for the existence of absolute space. The Kant argument, found in a 1768 essay on topology, argues for the existence of Newtonian-Euclidean absolute space on the basis of the existence of incongruous counterparts (such as a left and a right hand, or any asymmetrical object and its mirror-image). The clear, intrinsic difference between a left hand and a right hand, Kant claimed, cannot be understood on a relational view of (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • What price spacetime substantivalism? The hole story.John Earman & John Norton - 1987 - British Journal for the Philosophy of Science 38 (4):515-525.
    Spacetime substantivalism leads to a radical form of indeterminism within a very broad class of spacetime theories which include our best spacetime theory, general relativity. Extending an argument from Einstein, we show that spacetime substantivalists are committed to very many more distinct physical states than these theories' equations can determine, even with the most extensive boundary conditions.
    Download  
     
    Export citation  
     
    Bookmark   266 citations  
  • Curie’s Principle and spontaneous symmetry breaking.John Earman - 2004 - International Studies in the Philosophy of Science 18 (2 & 3):173 – 198.
    In 1894 Pierre Curie announced what has come to be known as Curie's Principle: the asymmetry of effects must be found in their causes. In the same publication Curie discussed a key feature of what later came to be known as spontaneous symmetry breaking: the phenomena generally do not exhibit the symmetries of the laws that govern them. Philosophers have long been interested in the meaning and status of Curie's Principle. Only comparatively recently have they begun to delve into the (...)
    Download  
     
    Export citation  
     
    Bookmark   65 citations  
  • The metaphysics of space‐time substantivalism.Carl Hoefer - 1996 - Journal of Philosophy 93 (1):5-27.
    Download  
     
    Export citation  
     
    Bookmark   101 citations  
  • Theoretical Realism and Theoretical Equivalence.Clark Glymour - 1970 - PSA: Proceedings of the Biennial Meeting of the Philosophy of Science Association 1970:275 - 288.
    Your use of the JSTOR archive indicates your acceptance of J STOR’s Terms and Conditions of Use, available at http://www.jstor.org/about/tenns.htm1. J STOR’s Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non—commercial use.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Handedness, parity violation, and the reality of space.Oliver Pooley - 2001 - In Katherine Brading & Elena Castellani (eds.), Symmetries in Physics: Philosophical Reflections. Cambridge University Press. pp. 250--280.
    In the first part of this paper a relational account of incongruent counterparts is defended against an argument due to Kant. I then consider a more recent attack on such an account, due to John Earman, which alleges that the relationalist cannot account for the lawlike left--right asymmetry manifested in parity-violating phenomena. I review Hoefer's, Huggett's and Saunders' responses to Earman's argument and argue that, while a relationalist account of parity-violating laws is possible, it comes at the cost of non-locality.
    Download  
     
    Export citation  
     
    Bookmark   33 citations