Switch to: Citations

Add references

You must login to add references.
  1. Against Field Interpretations of Quantum Field Theory.David John Baker - 2009 - British Journal for the Philosophy of Science 60 (3):585-609.
    I examine some problems standing in the way of a successful `field interpretation' of quantum field theory. The most popular extant proposal depends on the Hilbert space of `wavefunctionals.' But since wavefunctional space is unitarily equivalent to many-particle Fock space, two of the most powerful arguments against particle interpretations also undermine this form of field interpretation. IntroductionField Interpretations and Field OperatorsThe Wavefunctional InterpretationFields and Inequivalent Representations 4.1. The Rindler representation 4.2. Spontaneous symmetry breaking 4.3. Coherent representations The Fate of Fields (...)
    Download  
     
    Export citation  
     
    Bookmark   64 citations  
  • An Interpretive Introduction to Quantum Field Theory.Paul Teller - 1995 - Princeton University Press.
    Quantum mechanics is a subject that has captured the imagination of a surprisingly broad range of thinkers, including many philosophers of science. Quantum field theory, however, is a subject that has been discussed mostly by physicists. This is the first book to present quantum field theory in a manner that makes it accessible to philosophers. Because it presents a lucid view of the theory and debates that surround the theory, An Interpretive Introduction to Quantum Field Theory will interest students of (...)
    Download  
     
    Export citation  
     
    Bookmark   87 citations  
  • Broken Symmetry and Spacetime.David John Baker - 2011 - Philosophy of Science 78 (1):128-148.
    The phenomenon of broken spacetime symmetry in the quantum theory of infinite systems forces us to adopt an unorthodox ontology. We must abandon the standard conception of the physical meaning of these symmetries, or else deny the attractive “liberal” notion of which physical quantities are significant. A third option, more attractive but less well understood, is to abandon the existing (Halvorson-Clifton) notion of intertranslatability for quantum theories.
    Download  
     
    Export citation  
     
    Bookmark   20 citations  
  • Fulling Non‐uniqueness and the Unruh Effect: A Primer on Some Aspects of Quantum Field Theory.Aristidis Arageorgis, John Earman & Laura Ruetsche - 2003 - Philosophy of Science 70 (1):164-202.
    We discuss the intertwined topics of Fulling non‐uniqueness and the Unruh effect. The Fulling quantization, which is in some sense the natural one for an observer uniformly accelerated through Minkowski spacetime to adopt, is often heralded as a quantization of the Klein‐Gordon field which is both physically relevant and unitarily inequivalent to the standard Minkowski quantization. We argue that the Fulling and Minkowski quantizations do not constitute a satisfactory example of physically relevant, unitarily inequivalent quantizations, and indicate what it would (...)
    Download  
     
    Export citation  
     
    Bookmark   25 citations  
  • Interpreting quantum field theory.Laura Ruetsche - 2002 - Philosophy of Science 69 (2):348-378.
    The availability of unitarily inequivalent representations of the canonical commutation relations constituting a quantization of a classical field theory raises questions about how to formulate and pursue quantum field theory. In a minimally technical way, I explain how these questions arise and how advocates of the Hilbert space and of the algebraic approaches to quantum theory might answer them. Where these answers differ, I sketch considerations for and against each approach, as well as considerations which might temper their apparent rivalry.
    Download  
     
    Export citation  
     
    Bookmark   41 citations