Switch to: References

Citations of:

An Interpretive Introduction to Quantum Field Theory

Princeton University Press (1995)

Add citations

You must login to add citations.
  1. A discussion on quantum non-individuality.Décio Krause & Jonas R. Becker Arenhart - 2012 - Journal of Applied Non-Classical Logics 22 (1-2):105-124.
    In this paper we consider the notions of structure and models within the semantic approach to theories. To highlight the role of the mathematics used to build the structures which will be taken as the models of theories, we review the notion of mathematical structure and of the models of scientific theories. Then, we analyse a case-study and argue that if a certain metaphysical view of quantum objects is adopted, one seeing them as non-individuals, then there would be strong reasons (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Philosophical Aspects of Quantum Field Theory: I.Laura Ruetsche - 2012 - Philosophy Compass 7 (8):559-570.
    This is the first of a two-part introduction to some interpretive questions that arise in connection with quantum field theories (QFTs). Some of these questions are continuous with those familiar from the discussion of ordinary non-relativistic quantum mechanics (QM). For example, questions about locality can be rigorously posed and fruitfully pursued within the framework of QFT. A stark disanalogy between QFTs and ordinary QM – the former, but not the latter, typically admit infinitely many putatively physically inequivalent realizations – prompts (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • A Case for an Empirically Demonstrable Notion of the Vacuum in Quantum Electrodynamics Independent of Dynamical Fluctuations.Mario Bacelar Valente - 2011 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 42 (2):241-261.
    A re-evaluation of the notion of vacuum in quantum electrodynamics is presented, focusing on the vacuum of the quantized electromagnetic field. In contrast to the ‘nothingness’ associated to the idea of classical vacuum, subtle aspects are found in relation to the vacuum of the quantized electromagnetic field both at theoretical and experimental levels. These are not the usually called vacuum effects. The view defended here is that the so-called vacuum effects are not due to the ground state of the quantized (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Do Objects Depend on Structures?Johanna Wolff - 2012 - British Journal for the Philosophy of Science 63 (3):607-625.
    Ontic structural realists hold that structure is all there is, or at least all there is fundamentally. This thesis has proved to be puzzling: What exactly does it say about the relationship between objects and structures? In this article, I look at different ways of articulating ontic structural realism in terms of the relation between structures and objects. I show that objects cannot be reduced to structure, and argue that ontological dependence cannot be used to establish strong forms of structural (...)
    Download  
     
    Export citation  
     
    Bookmark   43 citations  
  • Quantum Mechanics and Metaphysical Indeterminacy.George Darby - 2010 - Australasian Journal of Philosophy 88 (2):227-245.
    There has been recent interest in formulating theories of non-representational indeterminacy. The aim of this paper is to clarify the relevance of quantum mechanics to this project. Quantum-mechanical examples of vague objects have been offered by various authors, displaying indeterminate identity, in the face of the famous Evans argument that such an idea is incoherent. It has also been suggested that the quantum-mechanical treatment of state-dependent properties exhibits metaphysical indeterminacy. In both cases it is important to consider the details of (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Reduction, Autonomy, and Causal Exclusion among Physical Properties.Alexander Rueger - 2004 - Synthese 139 (1):1 - 21.
    Is there a problem of causal exclusion between micro- and macro-level physical properties? I argue (following Kim) that the sorts of properties that in fact are in competition are macro properties, viz., the property of a (macro-) system of 'having such-and-such macro properties' (call this a 'macro-structural property') and the property of the same system of 'being constituted by such-and-such a micro- structure' (call this a 'micro-structural property'). I show that there are cases where, for lack of reducibility, there is (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The standard model of particle physics in other universes.Gordon McCabe - unknown
    The purpose of this paper is to demonstrate how the mathematical objects and structures associated with the particle physics in other universes, can be inferred from the mathematical objects and structures associated with the particle physics in our own universe. As such, this paper is a continuation of the research programme announced in McCabe (2004), which implemented this idea in the case of cosmology. The paper begins with an introduction that outlines the structuralist doctrine which this research programme depends upon. (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Observations on hyperplanes: I State reduction and unitary evolution.Gordon N. Fleming - unknown
    This is the first of two papers responding to ‘recent’ commentary on various aspects of hyperplane dependence by several authors. In this paper I focus on the issues of the relations of HD to state reduction and unitary evolution. The authors who’s comments I address here are Maudlin and Myrvold. In the second paper of this set I focus on HD dynamical variables and localizable properties and measurements and address comments of de Koning, Halvorson, Clifton and Wallace. Each paper ends (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Q-spaces and the Foundations of Quantum Mechanics.Graciela Domenech, Federico Holik & Décio Krause - 2008 - Foundations of Physics 38 (11):969-994.
    Our aim in this paper is to take quite seriously Heinz Post’s claim that the non-individuality and the indiscernibility of quantum objects should be introduced right at the start, and not made a posteriori by introducing symmetry conditions. Using a different mathematical framework, namely, quasi-set theory, we avoid working within a label-tensor-product-vector-space-formalism, to use Redhead and Teller’s words, and get a more intuitive way of dealing with the formalism of quantum mechanics, although the underlying logic should be modified. We build (...)
    Download  
     
    Export citation  
     
    Bookmark   40 citations  
  • Degrees of freedom and the interpretation of quantum field theory.Andrew Wayne - 1997 - Erkenntnis 46 (2):165-173.
    Nick Huggett and Robert Weingard (1994) have recently proposed a novel approach to interpreting field theories in physics, one which makes central use of the fact that a field generally has an infinite number of degrees of freedom in any finite region of space it occupies. Their characterization, they argue, (i) reproduces our intuitive categorizations of fields in the classical domain and thereby (ii) provides a basis for arguing that the quantum field is a field. Furthermore, (iii) it accomplishes these (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Twilight of the perfect model model.Paul Teller - 2001 - Erkenntnis 55 (3):393-415.
    Download  
     
    Export citation  
     
    Bookmark   168 citations  
  • Haag’s Theorem and its Implications for the Foundations of Quantum Field Theory.John Earman & Doreen Fraser - 2006 - Erkenntnis 64 (3):305 - 344.
    Although the philosophical literature on the foundations of quantum field theory recognizes the importance of Haag’s theorem, it does not provide a clear discussion of the meaning of this theorem. The goal of this paper is to make up for this deficit. In particular, it aims to set out the implications of Haag’s theorem for scattering theory, the interaction picture, the use of non-Fock representations in describing interacting fields, and the choice among the plethora of the unitarily inequivalent representations of (...)
    Download  
     
    Export citation  
     
    Bookmark   42 citations  
  • Relativizations of the Principle of Identity.Décio Krause & Jean-Yves Béziau - 1997 - Logic Journal of the IGPL 5 (3):17-29.
    We discuss some logico-mathematical systems which deviate from classical logic and mathematics with respect to the concept of identity. In the first part of the paper we present very general formulations of the principle of identity and show how they can be ‘relativized’ to objects and to properties. Then, as an application, we study the particular cases of physics and logic . In the last part of the paper, we discuss the alphabar logics, that is, those logical systems which violate (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Reductive levels and multi-scale structure.Patrick McGivern - 2008 - Synthese 165 (1):53 - 75.
    I discuss arguments about the relationship between different “levels” of explanation in the light of examples involving multi-scale analysis. I focus on arguments about causal competition between properties at different levels, such as Jaegwon Kim’s “supervenience argument.” A central feature of Kim’s argument is that higher-level properties can in general be identified with “micro-based” properties. I argue that explanations from multi-scale analysis give examples of explanations that are problematic for accounts such as Kim’s. I argue that these difficulties suggest that (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Ontology, matter and emergence.Michel Bitbol - 2007 - Phenomenology and the Cognitive Sciences 6 (3):293-307.
    “Ontological emergence” of inherent high-level properties with causal powers is witnessed nowhere. A non-substantialist conception of emergence works much better. It allows downward causation, provided our concept of causality is transformed accordingly.
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • The fundamentality of fields.Charles T. Sebens - 2022 - Synthese 200 (5):1-28.
    There is debate as to whether quantum field theory is, at bottom, a quantum theory of fields or particles. One can take a field approach to the theory, using wave functionals over field configurations, or a particle approach, using wave functions over particle configurations. This article argues for a field approach, presenting three advantages over a particle approach: particle wave functions are not available for photons, a classical field model of the electron gives a superior account of both spin and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Relativistic QFT from a Bohmian Perspective: A Proof of Concept.Hrvoje Nikolić - 2022 - Foundations of Physics 52 (4):1-18.
    Since Bohmian mechanics is explicitly nonlocal, it is widely believed that it is very hard, if not impossible, to make Bohmian mechanics compatible with relativistic quantum field theory. I explain, in simple terms, that it is not hard at all to construct a Bohmian theory that lacks Lorentz covariance, but makes the same measurable predictions as relativistic QFT. All one has to do is to construct a Bohmian theory that makes the same measurable predictions as QFT in one Lorentz frame, (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Particles in Quantum Field Theory.Doreen Fraser - 2022 - In Eleanor Knox & Alastair Wilson (eds.), The Routledge Companion to Philosophy of Physics. London, UK: Routledge. pp. 323-336.
    The consensus view among philosophers of physics is that relativistic quantum field theory does not describe particles. That is, according to QFT, particles are not fundamental entities. How is this negative conclusion compatible with the positive role that the particle notion plays in particle physics? The first part of this chapter lays out multiple lines of negative argument that all conclude that QFT cannot be given a particle interpretation. These arguments probe the properties of the `particles' in standard formulations of (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Effective theories and infinite idealizations: a challenge for scientific realism.Sébastien Rivat - 2020 - Synthese 198 (12):12107-12136.
    Williams and J. Fraser have recently argued that effective field theory methods enable scientific realists to make more reliable ontological commitments in quantum field theory than those commonly made. In this paper, I show that the interpretative relevance of these methods extends beyond the specific context of QFT by identifying common structural features shared by effective theories across physics. In particular, I argue that effective theories are best characterized by the fact that they contain intrinsic empirical limitations, and I extract (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Pure Consciousness and Quantum Field Theory.Markus E. Schlosser - manuscript
    In the first part I argue that Buddhism and Hinduism can be unified by a Pure Consciousness thesis, which says that the nature of ultimate reality is an unconditioned and pure consciousness and that the phenomenal world is a mere appearance of pure consciousness. In the second part I argue that the Pure Consciousness thesis can be supported by an argument from quantum physics. According to our best scientific theories, the fundamental nature of reality consists of quantum fields, and it (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The dissipative approach to quantum field theory: conceptual foundations and ontological implications.Andrea Oldofredi & Hans Christian Öttinger - 2020 - European Journal for Philosophy of Science 11 (1):1-36.
    Many attempts have been made to provide Quantum Field Theory with conceptually clear and mathematically rigorous foundations; remarkable examples are the Bohmian and the algebraic perspectives respectively. In this essay we introduce the dissipative approach to QFT, a new alternative formulation of the theory explaining the phenomena of particle creation and annihilation starting from nonequilibrium thermodynamics. It is shown that DQFT presents a rigorous mathematical structure, and a clear particle ontology, taking the best from the mentioned perspectives. Finally, after the (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • How Do Feynman Diagrams Work?James Robert Brown - 2018 - Perspectives on Science 26 (4):423-442.
    Feynman diagrams are now iconic. Like pictures of the Bohr atom, everyone knows they have something important to do with physics. Those who work in quantum field theory, string theory, and other esoteric fields of physics use them extensively. In spite of this, it is far from clear what they are or how they work. Are they mere calculating tools? Are they somehow pictures of physical reality? Are they models in any interesting sense? Or do they play some other kind (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • The Ontology of Quantum Field Theory: Structural Realism Vindicated?David Glick - 2016 - Studies in History and Philosophy of Science Part A 59:78-86.
    In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best confirmed theories in (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Why Interpret Quantum Physics?Edward MacKinnon - 2016 - Open Journal of Philosophy 6 (1):86-102.
    This article probes the question of what interpretations of quantum mechanics actually accomplish. In other domains, which are briefly considered, interpretations serve to make alien systematizations intelligible to us. This often involves clarifying the status of their implicit ontology. A survey of interpretations of non-relativistic quantum mechanics supports the evaluation that these interpretations make a contribution to philosophy, but not to physics. Interpretations of quantum field theory are polarized by the divergence between the Lagrangian field theory that led to the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What Chances Could Not Be.Jenann Ismael - 1996 - British Journal for the Philosophy of Science 47 (1):79-91.
    The chance of a physical event is the objective, single-case probability that it will occur. In probabilistic physical theories like quantum mechanics, the chances of physical events play the formal role that the values of physical quantities play in classical physics, and there is a temptation to regard them on the model of the latter as describing intrinsic properties of the systems to which they are assigned. I argue that this understanding of chances in quantum mechanics, despite being a part (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Feminist Philosophy of Science.Lynn Hankinson Nelson - 2002 - In Peter K. Machamer & Michael Silberstein (eds.), The Blackwell guide to the philosophy of science. Malden, Mass.: Blackwell. pp. 312–331.
    This chapter contains sections titled: Highlights of Past Literature Current Work Future Work.
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • The Strong and Weak Senses of Theory-Ladenness of Experimentation: Theory-Driven versus Exploratory Experiments in the History of High-Energy Particle Physics.Koray Karaca - 2013 - Science in Context 26 (1):93-136.
    ArgumentIn the theory-dominated view of scientific experimentation, all relations of theory and experiment are taken on a par; namely, that experiments are performed solely to ascertain the conclusions of scientific theories. As a result, different aspects of experimentation and of the relations of theory to experiment remain undifferentiated. This in turn fosters a notion of theory-ladenness of experimentation (TLE) that is toocoarse-grainedto accurately describe the relations of theory and experiment in scientific practice. By contrast, in this article, I suggest that (...)
    Download  
     
    Export citation  
     
    Bookmark   30 citations  
  • Naturalizing Badiou: mathematical ontology and structural realism.Fabio Gironi - 2014 - New York: Palgrave-Macmillan.
    This thesis offers a naturalist revision of Alain Badiou’s philosophy. This goal is pursued through an encounter of Badiou’s mathematical ontology and theory of truth with contemporary trends in philosophy of mathematics and philosophy of science. I take issue with Badiou’s inability to elucidate the link between the empirical and the ontological, and his residual reliance on a Heideggerian project of fundamental ontology, which undermines his own immanentist principles. I will argue for both a bottom-up naturalisation of Badiou’s philosophical approach (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Natural Sciences: Definitions and Attempt at Classification.Yury Viktor Kissin - 2013 - Cosmos and History 9 (2):116-137.
    The article discusses the formal classification of natural sciences, which is based on several propositions: (a) natural sciences can be separated onto independent and dependent sciences based on the gnosiologic criterion and irreducibility criteria (principal and technical); (b) there are four independent sciences which form a hierarchy: physics ← chemistry ← terrestrial biology ← human psychology; (c) every independent science except for physics has already developed or will develop in the future a set of final paradigms formulated in the terms (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Identity, Superselection Theory, and the Statistical Properties of Quantum Fields.David John Baker - 2013 - Philosophy of Science 80 (2):262-285.
    The permutation symmetry of quantum mechanics is widely thought to imply a sort of metaphysical underdetermination about the identity of particles. Despite claims to the contrary, this implication does not hold in the more fundamental quantum field theory, where an ontology of particles is not generally available. Although permutations are often defined as acting on particles, a more general account of permutation symmetry can be formulated using superselection theory. As a result, permutation symmetry applies even in field theories with no (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Philosophical Aspects of Quantum Field Theory: II.Laura Ruetsche - 2012 - Philosophy Compass 7 (8):571-584.
    According to a regnant criterion of physical equivalence for quantum theories, a quantum field theory (QFT) typically admits continuously many physically inequivalent realizations. This, the second of a two-part introduction to topics in the philosophy of QFT, continues the investigation of this alarming circumstance. It begins with a brief catalog of quantum field theoretic examples of this non-uniqueness, then presents the basics of the algebraic approach to quantum theories, which discloses a structure common even to ‘physically inequivalent’ realizations of a (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Idealization in Quantum Field Theory.Stephan Hartmann - 1990 - In Niall Shanks (ed.), Idealization in Contemporary Physics. pp. 99-122.
    This paper explores various functions of idealizations in quantum field theory. To this end it is important to first distinguish between different kinds of theories and models of or inspired by quantum field theory. Idealizations have pragmatic and cognitive functions. Analyzing a case-study from hadron physics, I demonstrate the virtues of studying highly idealized models for exploring the features of theories with an extremely rich structure such as quantum field theory and for gaining some understanding of the physical processes in (...)
    Download  
     
    Export citation  
     
    Bookmark   18 citations  
  • Against Field Interpretations of Quantum Field Theory.David John Baker - 2009 - British Journal for the Philosophy of Science 60 (3):585-609.
    I examine some problems standing in the way of a successful `field interpretation' of quantum field theory. The most popular extant proposal depends on the Hilbert space of `wavefunctionals.' But since wavefunctional space is unitarily equivalent to many-particle Fock space, two of the most powerful arguments against particle interpretations also undermine this form of field interpretation. IntroductionField Interpretations and Field OperatorsThe Wavefunctional InterpretationFields and Inequivalent Representations 4.1. The Rindler representation 4.2. Spontaneous symmetry breaking 4.3. Coherent representations The Fate of Fields (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • What chances could not be.Jenann Ismael - 1996 - British Journal for the Philosophy of Science 47 (1):79-91.
    The chance of a physical event is the objective, single-case probability that it will occur. In probabilistic physical theories like quantum mechanics, the chances of physical events play the formal role that the values of physical quantities play in classical (deterministic) physics, and there is a temptation to regard them on the model of the latter as describing intrinsic properties of the systems to which they are assigned. I argue that this understanding of chances in quantum mechanics, despite being a (...)
    Download  
     
    Export citation  
     
    Bookmark   21 citations  
  • Exchange Forces in Particle Physics.Gregg Jaeger - 2021 - Foundations of Physics 51 (1):1-31.
    The operation of fundamental forces in quantum field theory is explicated here as the exchange of particles, consistently with the standard methodology of particle physics. The particles involved are seen to bear little relation to any classical particle but, rather, comprise unified collections of compresent, conserved quantities indicated by propagators. The exchange particles, which supervene upon quantum fields, are neither more fundamental than fields nor replace them as has often previously been assumed in models of exchange forces. It is argued (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • A Scientific Metaphysical Naturalisation of Information.Bruce Long - 2018 - Dissertation, University of Sydney
    The objective of this thesis is to present a naturalised metaphysics of information, or to naturalise information, by way of deploying a scientific metaphysics according to which contingency is privileged and a-priori conceptual analysis is excluded (or at least greatly diminished) in favour of contingent and defeasible metaphysics. The ontology of information is established according to the premises and mandate of the scientific metaphysics by inference to the best explanation, and in accordance with the idea that the primacy of physics (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Not Particles, Not Quite Fields: An Ontology for Quantum Field Theory.Tracy Lupher - 2018 - Humana Mente 4 (13):155-173.
    There are significant problems involved in determining the ontology of quantum field theory. An ontology involving particles seems to be ruled out due to the problem of defining localized position operators, issues involving interactions in QFT, and, perhaps, the appearance of unitarily inequivalent representations. While this might imply that fields are the most natural ontology for QFT, the wavefunctional interpretation of QFT has significant drawbacks. A modified field ontology is examined where determinables are assigned to open bounded regions of spacetime (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Making worlds with symbols.Paul Teller - 2018 - Synthese 198 (Suppl 21):5015-5036.
    I modify and generalize Carnap’s notion of frameworks as a way of unpacking Goodman’s metaphor of “making worlds with symbols”. My frameworks provide, metaphorically, a way of making worlds out of symbols in as much as all our framework-bound access to the world is through frameworks that always stand to be improved in accuracy, precision, and usually both. Such improvement is characterized in pragmatist terms.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The computable universe: from prespace metaphysics to discrete quantum mechanics.Martin Leckey - 1997 - Dissertation, Monash University
    The central motivating idea behind the development of this work is the concept of prespace, a hypothetical structure that is postulated by some physicists to underlie the fabric of space or space-time. I consider how such a structure could relate to space and space-time, and the rest of reality as we know it, and the implications of the existence of this structure for quantum theory. Understanding how this structure could relate to space and to the rest of reality requires, I (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Philosophy of Quantum Field Theory.David John Baker - unknown
    If we divide our physical theories into theories of matter and theories of spacetime, quantum field theory is our most fundamental empirically successful theory of matter. As such, it has attracted increasing attention from philosophers over the past two decades, beginning to eclipse its predecessor theory of quantum mechanics in the philosophical literature. Here I survey some central philosophical puzzles about the theory's foundations.
    Download  
     
    Export citation  
     
    Bookmark   11 citations  
  • Are Virtual Quanta Nothing but Formal Tools?Mario Bacelar Valente - 2011 - International Studies in the Philosophy of Science 25 (1):39 - 53.
    The received view in philosophical studies of quantum field theory is that Feynman diagrams are simply calculational devices. Alongside this view we have the one that takes virtual quanta to be also simply formal tools. This received view was developed and consolidated in philosophy of physics by Mario Bunge, Paul Teller, Michael Redhead, Robert Weingard, Brigitte Falkenburg, and others. In this article I present an alternative to the received view.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Quantum field theory: Underdetermination, inconsistency, and idealization.Doreen Fraser - 2009 - Philosophy of Science 76 (4):536-567.
    Quantum field theory (QFT) presents a genuine example of the underdetermination of theory by empirical evidence. There are variants of QFT—for example, the standard textbook formulation and the rigorous axiomatic formulation—that are empirically indistinguishable yet support different interpretations. This case is of particular interest to philosophers of physics because, before the philosophical work of interpreting QFT can proceed, the question of which variant should be subject to interpretation must be settled. New arguments are offered for basing the interpretation of QFT (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • Identity, indiscernibility, and philosophical claims.Décio Krause & Antonio Mariano Nogueira Coelho - 2005 - Axiomathes 15 (2):191-210.
    The concept of indiscernibility in a structure is analysed with the aim of emphasizing that in asserting that two objects are indiscernible, it is useful to consider these objects as members of (the domain of) a structure. A case for this usefulness is presented by examining the consequences of this view to the philosophical discussion on identity and indiscernibility in quantum theory.
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • On the significance of permutation symmetry.Nick Huggett - 1999 - British Journal for the Philosophy of Science 50 (3):325-347.
    There has been considerable recent philosophical debate over the implications of many particle quantum mechanics for the metaphysics of individuality (cf. Huggett [1997]). In this paper I look at things from a rather different perspective: by investigating the significance of permutation symmetry. I consider how various philosophical positions link up to the physical postulate of the indistinguishability of permuted states-permutation invariance-and how this postulate is used to explain quantum statistics. I offer an explanation of the statistics that relies on the (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Against particle/field duality: Asymptotic particle states and interpolating fields in interacting qft (or: Who's afraid of Haag's theorem?). [REVIEW]Jonathan Bain - 2000 - Erkenntnis 53 (3):375-406.
    This essay touches on a number of topics in philosophy of quantum field theory from the point of view of the LSZ asymptotic approach to scattering theory. First, particle/field duality is seen to be a property of free field theory and not of interacting QFT. Second, it is demonstrated how LSZ side-steps the implications of Haag's theorem. Finally, a recent argument due to Redhead, Malament and Arageorgis against the concept of localized particle states is addressed. Briefly, the argument observes that (...)
    Download  
     
    Export citation  
     
    Bookmark   23 citations  
  • Quantum sortal predicates.Décio Krause & Steven French - 2007 - Synthese 154 (3):417 - 430.
    Sortal predicates have been associated with a counting process, which acts as a criterion of identity for the individuals they correctly apply to. We discuss in what sense certain types of predicates suggested by quantum physics deserve the title of ‘sortal’ as well, although they do not characterize either a process of counting or a criterion of identity for the entities that fall under them. We call such predicates ‘quantum-sortal predicates’ and, instead of a process of counting, to them is (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • L'empirisme modal.Quentin Ruyant - 2017 - Dissertation, Université Rennes 1
    The aim of this thesis dissertation is to propose a novel position in the debate on scientific realism, modal empiricism, and to show its fruitfulness when it comes to interpreting the cognitive content of scientific theories. Modal empiricism is an empiricist position, according to which the aim of science is to produce empirically adequate theories rather than true theories. However, it suggests adopting a broader comprehension of experience than traditional versions of empiricism, through a commitment to natural modalities. Following modal (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • The Real Problem with Perturbative Quantum Field Theory.James D. Fraser - 2020 - British Journal for the Philosophy of Science 71 (2):391-413.
    The perturbative approach to quantum field theory has long been viewed with suspicion by philosophers of science. This article offers a diagnosis of its conceptual problems. Drawing on Norton’s discussion of the notion of approximation I argue that perturbative QFT ought to be understood as producing approximations without specifying an underlying QFT model. This analysis leads to a reassessment of common worries about perturbative QFT. What ends up being the key issue with the approach on this picture is not mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • Appearing Out of Nowhere: The Emergence of Spacetime in Quantum Gravity.Karen Crowther - 2014 - Dissertation, University of Sydney
    Quantum gravity is understood as a theory that, in some sense, unifies general relativity (GR) and quantum theory, and is supposed to replace GR at extremely small distances (high-energies). It may be that quantum gravity represents the breakdown of spacetime geometry described by GR. The relationship between quantum gravity and spacetime has been deemed ``emergence'', and the aim of this thesis is to investigate and explicate this relation. After finding traditional philosophical accounts of emergence to be inappropriate, I develop a (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • The Quasi-lattice of Indiscernible Elements.Mauri Cunha do Nascimento, Décio Krause & Hércules Araújo Feitosa - 2011 - Studia Logica 97 (1):101-126.
    The literature on quantum logic emphasizes that the algebraic structures involved with orthodox quantum mechanics are non distributive. In this paper we develop a particular algebraic structure, the quasi-lattice ( $${\mathfrak{I}}$$ -lattice), which can be modeled by an algebraic structure built in quasi-set theory $${\mathfrak{Q}}$$. This structure is non distributive and involve indiscernible elements. Thus we show that in taking into account indiscernibility as a primitive concept, the quasi-lattice that ‘naturally’ arises is non distributive.
    Download  
     
    Export citation  
     
    Bookmark   4 citations