Switch to: Citations

Add references

You must login to add references.
  1. Explanation: a mechanist alternative.William Bechtel & Adele Abrahamsen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):421-441.
    Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...)
    Download  
     
    Export citation  
     
    Bookmark   555 citations  
  • Discovering Cell Mechanisms: The Creation of Modern Cell Biology.William Bechtel - 2007 - Journal of the History of Biology 40 (1):185-187.
    Between 1940 and 1970 pioneers in the new field of cell biology discovered the operative parts of cells and their contributions to cell life. They offered mechanistic accounts that explained cellular phenomena by identifying the relevant parts of cells, the biochemical operations they performed, and the way in which these parts and operations were organised to accomplish important functions. Cell biology was a revolutionary science but in this book it also provides fuel for yet another revolution, one that focuses on (...)
    Download  
     
    Export citation  
     
    Bookmark   153 citations  
  • Discovering Complexity: Decomposition and Localization as Strategies in Scientific Research.William Bechtel & Robert C. Richardson - 2010 - Princeton.
    An analysis of two heuristic strategies for the development of mechanistic models, illustrated with historical examples from the life sciences. In Discovering Complexity, William Bechtel and Robert Richardson examine two heuristics that guided the development of mechanistic models in the life sciences: decomposition and localization. Drawing on historical cases from disciplines including cell biology, cognitive neuroscience, and genetics, they identify a number of "choice points" that life scientists confront in developing mechanistic explanations and show how different choices result in divergent (...)
    Download  
     
    Export citation  
     
    Bookmark   519 citations  
  • Autonomy, function, and representation.Mark H. Bickhard - 2000 - Communication and Cognition-Artificial Intelligence 17 (3-4):111-131.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Autonomy and the emergence of intelligence: Organised interactive construction.W. D. Christensen & C. A. Hooker - 2000 - Communication and Cognition-Artificial Intelligence 17 (3-4):133-157.
    Download  
     
    Export citation  
     
    Bookmark   15 citations  
  • The sciences of the artificial.Herbert Alexander Simon - 1969 - [Cambridge,: M.I.T. Press.
    Continuing his exploration of the organization of complexity and the science of design, this new edition of Herbert Simon's classic work on artificial ...
    Download  
     
    Export citation  
     
    Bookmark   936 citations  
  • Complexly organised dynamical systems.John D. Collier & Clifford A. Hooker - 1999 - Open Systems and Information Dynamics 6 (3):241–302.
    Both natural and engineered systems are fundamentally dynamical in nature: their defining properties are causal, and their functional capacities are causally grounded. Among dynamical systems, an interesting and important sub-class are those that are autonomous, anticipative and adaptive (AAA). Living systems, intelligent systems, sophisticated robots and social systems belong to this class, and the use of these terms has recently spread rapidly through the scientific literature. Central to understanding these dynamical systems is their complicated organisation and their consequent capacities for (...)
    Download  
     
    Export citation  
     
    Bookmark   41 citations  
  • (1 other version)Hot Thought: Mechanisms and Applications of Emotional Cognition.Paul Thagard - 2006 - Cambridge MA: Bradford Book/MIT Press.
    A description of mental mechanisms that explain how emotions influence thought, from everyday decision making to scientific discovery and religious belief, and an analysis of when emotion can contribute to good reasoning.
    Download  
     
    Export citation  
     
    Bookmark   59 citations  
  • Thinking about mechanisms.Peter Machamer, Lindley Darden & Carl F. Craver - 2000 - Philosophy of Science 67 (1):1-25.
    The concept of mechanism is analyzed in terms of entities and activities, organized such that they are productive of regular changes. Examples show how mechanisms work in neurobiology and molecular biology. Thinking in terms of mechanisms provides a new framework for addressing many traditional philosophical issues: causality, laws, explanation, reduction, and scientific change.
    Download  
     
    Export citation  
     
    Bookmark   1336 citations  
  • (1 other version)Hot Thought: Mechanisms and Applications of Emotional Cognition.Paul Thagard - 2008 - Bradford.
    Contrary to standard assumptions, reasoning is often an emotional process. Emotions can have good effects, as when a scientist gets excited about a line of research and pursues it successfully despite criticism. But emotions can also distort reasoning, as when a juror ignores evidence of guilt just because the accused seems like a nice guy. In _Hot Thought_, Paul Thagard describes the mental mechanisms -- cognitive, neural, molecular, and social -- that interact to produce different kinds of human thinking, from (...)
    Download  
     
    Export citation  
     
    Bookmark   63 citations  
  • Investigations.Stuart A. Kauffman - 2000 - Oxford University Press.
    A fascinating exploration of the very essence of life itself sheds new light on the order and evolution in complex life systems and defines and explains autonomous agents and work within the contexts of thermodynamics and information theory, setting the stage for a dramatic technological revolution. 50,000 first printing.
    Download  
     
    Export citation  
     
    Bookmark   225 citations  
  • Discovering Cell Mechanisms: The Creation of Modern Cell Biology.William Bechtel - 2005 - Cambridge University Press.
    Between 1940 and 1970 pioneers in the new field of cell biology discovered the operative parts of cells and their contributions to cell life. They offered mechanistic accounts that explained cellular phenomena by identifying the relevant parts of cells, the biochemical operations they performed, and the way in which these parts and operations were organised to accomplish important functions. Cell biology was a revolutionary science but in this book it also provides fuel for yet another revolution, one that focuses on (...)
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • (1 other version)Reasoning in Biological Discoveries: Essays on Mechanisms, Interfield Relations, and Anomaly Resolution.Lindley Darden - 2006 - New York: Cambridge University Press.
    Reasoning in Biological Discoveries brings together a series of essays, which focus on one of the most heavily debated topics of scientific discovery. Collected together and richly illustrated, Darden's essays represent a groundbreaking foray into one of the major problems facing scientists and philosophers of science. Divided into three sections, the essays focus on broad themes, notably historical and philosophical issues at play in discussions of biological mechanism; and the problem of developing and refining reasoning strategies, including interfield relations and (...)
    Download  
     
    Export citation  
     
    Bookmark   100 citations  
  • The Principles of Life.Tibor Ganti - 2003 - Oxford University Press UK.
    This highly readable theory of life and its origins offers a non-technical discussion of a chemical perspective on the fundamental organisation of living systems. Essays on the biological and philosophical significance of Ganti's work of thirty years indicate not only its enduring theoretical significance, but also the continuing relevance and heuristic power of Ganti's insights.
    Download  
     
    Export citation  
     
    Bookmark   78 citations  
  • (1 other version)Emergence and its place in nature: a case study of biochemical networks.Fred C. Boogerd, Frank J. Bruggeman, Robert C. Richardson, Achim Stephan & Hans V. Westerhoff - 2005 - Synthese 145 (1):131-164.
    We will show that there is a strong form of emergence in cell biology. Beginning with C.D. Broad’s classic discussion of emergence, we distinguish two conditions sufficient for emergence. Emergence in biology must be compatible with the thought that all explanations of systemic properties are mechanistic explanations and with their sufficiency. Explanations of systemic properties are always in terms of the properties of the parts within the system. Nonetheless, systemic properties can still be emergent. If the properties of the components (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Redox rhythmicity: clocks at the core of temporal coherence.David Lloyd & Douglas B. Murray - 2007 - Bioessays 29 (5):465-473.
    Ultradian rhythms are those that cycle many times in a day and are therefore measured in hours, minutes, seconds or even fractions of a second. In yeasts and protists, a temperature‐compensated clock with a period of about an hour (30–90 minutes) provides the time base upon which all central processes are synchronized. A 40‐minute clock in yeast times metabolic, respiratory and transcriptional processes, and controls cell division cycle progression. This system has at its core a redox cycle involving NAD(P)H and (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Music of Life: Biology Beyond the Genome.Denis Noble - 2006 - Oxford University Press.
    What is Life? This is the question asked by Denis Noble in this very personal and at times deeply lyrical book. Noble is a renowned physiologist and systems biologist, and he argues that the genome is not life itself: to understand what life is, we must view it at a variety of different levels, all interacting with each other in a complex web. It is that emergent web, full of feedback between levels, from the gene to the wider environment, that (...)
    Download  
     
    Export citation  
     
    Bookmark   67 citations  
  • (1 other version)Emergence and Its Place in Nature: A Case Study of Biochemical Networks.F. C. Boogerd, F. J. Bruggeman, Robert C. Richardson, Achim Stephan & H. Westerhoff - 2005 - Synthese 145 (1):131 - 164.
    We will show that there is a strong form of emergence in cell biology. Beginning with C.D. Broad's classic discussion of emergence, we distinguish two conditions sufficient for emergence. Emergence in biology must be compatible with the thought that all explanations of systemic properties are mechanistic explanations and with their sufficiency. Explanations of systemic properties are always in terms of the properties of the parts within the system. Nonetheless, systemic properties can still be emergent. If the properties of the components (...)
    Download  
     
    Export citation  
     
    Bookmark   70 citations  
  • Dynamic mechanistic explanation: computational modeling of circadian rhythms as an exemplar for cognitive science.William Bechtel & Adele Abrahamsen - 2010 - Studies in History and Philosophy of Science Part A 41 (3):321-333.
    Two widely accepted assumptions within cognitive science are that (1) the goal is to understand the mechanisms responsible for cognitive performances and (2) computational modeling is a major tool for understanding these mechanisms. The particular approaches to computational modeling adopted in cognitive science, moreover, have significantly affected the way in which cognitive mechanisms are understood. Unable to employ some of the more common methods for conducting research on mechanisms, cognitive scientists’ guiding ideas about mechanism have developed in conjunction with their (...)
    Download  
     
    Export citation  
     
    Bookmark   119 citations