Switch to: References

Add citations

You must login to add citations.
  1. Cancer, Conflict, and the Development of Nuclear Transplantation Techniques.Nathan Crowe - 2014 - Journal of the History of Biology 47 (1):63-105.
    The technique of nuclear transplantation – popularly known as cloning – has been integrated into several different histories of twentieth century biology. Historians and science scholars have situated nuclear transplantation within narratives of scientific practice, biotechnology, bioethics, biomedicine, and changing views of life. However, nuclear transplantation has never been the focus of analysis. In this article, I examine the development of nuclear transplantation techniques, focusing on the people, motivations, and institutions associated with the first successful nuclear transfer in metazoans in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Top-down causation without top-down causes.Carl F. Craver & William Bechtel - 2007 - Biology and Philosophy 22 (4):547-563.
    We argue that intelligible appeals to interlevel causes (top-down and bottom-up) can be understood, without remainder, as appeals to mechanistically mediated effects. Mechanistically mediated effects are hybrids of causal and constitutive relations, where the causal relations are exclusively intralevel. The idea of causation would have to stretch to the breaking point to accommodate interlevel causes. The notion of a mechanistically mediated effect is preferable because it can do all of the required work without appealing to mysterious interlevel causes. When interlevel (...)
    Download  
     
    Export citation  
     
    Bookmark   239 citations  
  • (1 other version)Constitutive Explanatory Relevance.Carl Craver - 2007 - Journal of Philosophical Research 32:3-20.
    In what sense are the activities and properties of components in a mechanism explanatorily relevant to the behavior of a mechanism as a whole? I articulate this problem, the problem of constitutive relevance, and I show that it must be solved if we are to understand mechanisms and mechanistic explanation. I argue against some putative solutions to the problem of constitutive relevance, and I sketch a positive account according to which relevance is analyzed in terms ofrelationships of mutual manipulability between (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • (1 other version)Mechanisms and psychological explanation.Cory Wright & William Bechtel - 2006 - In Paul Thagard (ed.), Handbook of the Philosophy of Psychology and Cognitive Science. Elsevier.
    As much as assumptions about mechanisms and mechanistic explanation have deeply affected psychology, they have received disproportionately little analysis in philosophy. After a historical survey of the influences of mechanistic approaches to explanation of psychological phenomena, we specify the nature of mechanisms and mechanistic explanation. Contrary to some treatments of mechanistic explanation, we maintain that explanation is an epistemic activity that involves representing and reasoning about mechanisms. We discuss the manner in which mechanistic approaches serve to bridge levels rather than (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Mendelian Genetics as a Platform for Teaching About Nature of Science and Scientific Inquiry: The Value of Textbooks.Megan F. Campanile, Norman G. Lederman & Kostas Kampourakis - 2015 - Science & Education 24 (1-2):205-225.
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Naturalizing Theorizing: Beyond a Theory of Biological Theories. [REVIEW]Werner Callebaut - 2013 - Biological Theory 7 (4):413-429.
    Although “theory” has been the prevalent unit of analysis in the meta-study of science throughout most of the twentieth century, the concept remains elusive. I further explore the leitmotiv of several authors in this issue: that we should deal with theorizing (rather than theory) in biology as a cognitive activity that is to be investigated naturalistically. I first contrast how philosophers and biologists have tended to think about theory in the last century or so, and consider recent calls to upgrade (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Rethinking the Synthesis Period in Evolutionary Studies.Joe Cain - 2009 - Journal of the History of Biology 42 (4):621 - 648.
    I propose we abandon the unit concept of "the evolutionary synthesis". There was much more to evolutionary studies in the 1920s and 1930s than is suggested in our commonplace narratives of this object in history. Instead, four organising threads capture much of evolutionary studies at this time. First, the nature of species and the process of speciation were dominating, unifying subjects. Second, research into these subjects developed along four main lines, or problem complexes: variation, divergence, isolation, and selection. Some calls (...)
    Download  
     
    Export citation  
     
    Bookmark   33 citations  
  • Mechanisms, Experiments, and Theory-Ladenness: A Realist–Perspectivalist View.Marco Buzzoni - 2016 - Axiomathes 26 (4):411-427.
    The terms “perspectivism” and “perspectivalism” have been the focus of an intense philosophical discussion with important repercussions for the debate about the role of mechanisms in scientific explanations. However, leading exponents of the new mechanistic philosophy have conceded more than was necessary to the radically subjectivistic perspectivalism, and fell into the opposite error, by retaining not negligible residues of objectivistic views about mechanisms. In order to remove this vacillation between the subjective-cultural and the objective-natural sides of mechanisms, we shall raise (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Books received. [REVIEW]Ralf Busse - 2007 - Erkenntnis 67 (3):455-466.
    Download  
     
    Export citation  
     
    Bookmark  
  • Multi-Level Semiosis: a Paradigm of Emergent Innovation.Luis Emilio Bruni & Franco Giorgi - 2016 - Biosemiotics 9 (3):307-318.
    In this introductory article to the special issue on Multi-level semiosis we attempt to stage the background for qualifying the notion of “multi-levelness” when considering communication processes and semiosis in all life forms, i.e. from the cellular to the organismic level. While structures are organized hierarchically, communication processes require a kind of processual organization that may be better described as being heterarchical. Theoretically, the challenge arises in the temporal domain, that is, in the developmental and evolutionary dimension of dynamic semiotic (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Systems biology and the integration of mechanistic explanation and mathematical explanation.Ingo Brigandt - 2013 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 44 (4):477-492.
    The paper discusses how systems biology is working toward complex accounts that integrate explanation in terms of mechanisms and explanation by mathematical models—which some philosophers have viewed as rival models of explanation. Systems biology is an integrative approach, and it strongly relies on mathematical modeling. Philosophical accounts of mechanisms capture integrative in the sense of multilevel and multifield explanations, yet accounts of mechanistic explanation have failed to address how a mathematical model could contribute to such explanations. I discuss how mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   54 citations  
  • Explanation in Biology: Reduction, Pluralism, and Explanatory Aims.Ingo Brigandt - 2011 - Science & Education 22 (1):69-91.
    This essay analyzes and develops recent views about explanation in biology. Philosophers of biology have parted with the received deductive-nomological model of scientific explanation primarily by attempting to capture actual biological theorizing and practice. This includes an endorsement of different kinds of explanation (e.g., mathematical and causal-mechanistic), a joint study of discovery and explanation, and an abandonment of models of theory reduction in favor of accounts of explanatory reduction. Of particular current interest are philosophical accounts of complex explanations that appeal (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology.Ingo Brigandt - 2010 - Erkenntnis 73 (3):295-311.
    The paper works towards an account of explanatory integration in biology, using as a case study explanations of the evolutionary origin of novelties-a problem requiring the integration of several biological fields and approaches. In contrast to the idea that fields studying lower level phenomena are always more fundamental in explanations, I argue that the particular combination of disciplines and theoretical approaches needed to address a complex biological problem and which among them is explanatorily more fundamental varies with the problem pursued. (...)
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • Mechanistic Explanations and Models in Molecular Systems Biology.Fred C. Boogerd, Frank J. Bruggeman & Robert C. Richardson - 2013 - Foundations of Science 18 (4):725-744.
    Mechanistic models in molecular systems biology are generally mathematical models of the action of networks of biochemical reactions, involving metabolism, signal transduction, and/or gene expression. They can be either simulated numerically or analyzed analytically. Systems biology integrates quantitative molecular data acquisition with mathematical models to design new experiments, discriminate between alternative mechanisms and explain the molecular basis of cellular properties. At the heart of this approach are mechanistic models of molecular networks. We focus on the articulation and development of mechanistic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • New Forms of Complementarity in Science.Andrea Bonaccorsi - 2010 - Minerva 48 (4):355-387.
    New sciences born or developed in the 20th century (information, materials, life science) are based on forms of complementarity that differ from the past. The paper discusses cognitive, or disciplinary, institutional, and technical complementarity. It argues that new sciences apply a reductionist explanatory strategy to complex multi-layered systems. In doing so the reductionist promise is falsified, generating the need for multi-level kinds of explanation (e.g. in post-genomic molecular biology), new forms of complementarity between scientific and non-scientific organizations, and new forms (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Causal Reasoning and Clinical Practice: Challenges from Molecular Biology.Giovanni Boniolo & Raffaella Campaner - 2019 - Topoi 38 (2):423-435.
    Not only has the philosophical debate on causation been gaining ground in the last few decades, but it has also increasingly addressed the sciences. The biomedical sciences are among the most prominent fields that have been considered, with a number of works tackling the understanding of the notion of cause, the assessment of genuinely causal relations and the use of causal knowledge in applied contexts. Far from denying the merits of the debate on causation and the major theories it comprises, (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Philosophy 
of 
the 
Cognitive 
Sciences.William Bechtel & Mitchell Herschbach - 2010-01-04 - In Fritz Allhoff (ed.), Philosophies of the Sciences. Wiley‐Blackwell. pp. 239--261.
    Cognitive science is an interdisciplinary research endeavor focusing on human cognitive phenomena such as memory, language use, and reasoning. It emerged in the second half of the 20th century and is charting new directions at the beginning of the 21st century. This chapter begins by identifying the disciplines that contribute to cognitive science and reviewing the history of the interdisciplinary engagements that characterize it. The second section examines the role that mechanistic explanation plays in cognitive science, while the third focuses (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Mechanists Must be Holists Too! Perspectives from Circadian Biology.William Bechtel - 2016 - Journal of the History of Biology 49 (4):705-731.
    The pursuit of mechanistic explanations in biology has produced a great deal of knowledge about the parts, operations, and organization of mechanisms taken to be responsible for biological phenomena. Holist critics have often raised important criticisms of proposed mechanistic explanations, but until recently holists have not had alternative research strategies through which to advance explanations. This paper argues both that the results of mechanistic strategies has forced mechanists to confront ways in which whole systems affect their components and that new (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mechanisms in cognitive psychology: What are the operations?William Bechtel - 2008 - Philosophy of Science 75 (5):983-994.
    Cognitive psychologists, like biologists, frequently describe mechanisms when explaining phenomena. Unlike biologists, who can often trace material transformations to identify operations, psychologists face a more daunting task in identifying operations that transform information. Behavior provides little guidance as to the nature of the operations involved. While not itself revealing the operations, identification of brain areas involved in psychological mechanisms can help constrain attempts to characterize the operations. In current memory research, evidence that the same brain areas are involved in what (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Looking down, around, and up: Mechanistic explanation in psychology.William Bechtel - 2009 - Philosophical Psychology 22 (5):543-564.
    Accounts of mechanistic explanation have emphasized the importance of looking down—decomposing a mechanism into its parts and operations. Using research on visual processing as an exemplar, I illustrate how productive such research has been. But once multiple components of a mechanism have been identified, researchers also need to figure out how it is organized—they must look around and determine how to recompose the mechanism. Although researchers often begin by trying to recompose the mechanism in terms of sequential operations, they frequently (...)
    Download  
     
    Export citation  
     
    Bookmark   71 citations  
  • In Search of Mitochondrial Mechanisms: Interfield Excursions between Cell Biology and Biochemistry.William Bechtel & Adele Abrahamsen - 2007 - Journal of the History of Biology 40 (1):1-33.
    Developing models of biological mechanisms, such as those involved in respiration in cells, often requires collaborative effort drawing upon techniques developed and information generated in different disciplines. Biochemists in the early decades of the 20th century uncovered all but the most elusive chemical operations involved in cellular respiration, but were unable to align the reaction pathways with particular structures in the cell. During the period 1940-1965 cell biology was emerging as a new discipline and made distinctive contributions to understanding the (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • Generalization and discovery by assuming conserved mechanisms: Cross‐species research on circadian oscillators.William Bechtel - 2009 - Philosophy of Science 76 (5):762-773.
    In many domains of biology, explanation takes the form of characterizing the mechanism responsible for a particular phenomenon in a specific biological system. How are such explanations generalized? One important strategy assumes conservation of mechanisms through evolutionary descent. But conservation is seldom complete. In the case discussed, the central mechanism for circadian rhythms in animals was first identified in Drosophila and then extended to mammals. Scientists' working assumption that the clock mechanisms would be conserved both yielded important generalizations and served (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Explanation: a mechanist alternative.William Bechtel & Adele Abrahamsen - 2005 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 36 (2):421-441.
    Explanations in the life sciences frequently involve presenting a model of the mechanism taken to be responsible for a given phenomenon. Such explanations depart in numerous ways from nomological explanations commonly presented in philosophy of science. This paper focuses on three sorts of differences. First, scientists who develop mechanistic explanations are not limited to linguistic representations and logical inference; they frequently employ diagrams to characterize mechanisms and simulations to reason about them. Thus, the epistemic resources for presenting mechanistic explanations are (...)
    Download  
     
    Export citation  
     
    Bookmark   557 citations  
  • Analysing Network Models to Make Discoveries about Biological Mechanisms.William Bechtel - 2019 - British Journal for the Philosophy of Science 70 (2):459-484.
    Systems biology provides alternatives to the strategies to developing mechanistic explanations traditionally pursued in cell and molecular biology and much discussed in accounts of mechanistic explanation. Rather than starting by identifying a mechanism for a given phenomenon and decomposing it, systems biologists often start by developing cell-wide networks of detected connections between proteins or genes and construe clusters of highly interactive components as potential mechanisms. Using inference strategies such as ‘guilt-by-association’, researchers advance hypotheses about functions performed of these mechanisms. I (...)
    Download  
     
    Export citation  
     
    Bookmark   13 citations  
  • Negative causation in causal and mechanistic explanation.D. Benjamin Barros - 2013 - Synthese 190 (3):449-469.
    Instances of negative causation—preventions, omissions, and the like—have long created philosophical worries. In this paper, I argue that concerns about negative causation can be addressed in the context of causal explanation generally, and mechanistic explanation specifically. The gravest concern about negative causation is that it exacerbates the problem of causal promiscuity—that is, the problem that arises when a particular account of causation identifies too many causes for a particular effect. In the explanatory context, the problem of promiscuity can be solved (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • The ‘Big Picture’: The Problem of Extrapolation in Basic Research.Tudor M. Baetu - 2016 - British Journal for the Philosophy of Science 67 (4):941-964.
    Both clinical research and basic science rely on the epistemic practice of extrapolation from surrogate models, to the point that explanatory accounts presented in review papers and biology textbooks are in fact composite pictures reconstituted from data gathered in a variety of distinct experimental setups. This raises two new challenges to previously proposed mechanistic-similarity solutions to the problem of extrapolation: one pertaining to the absence of mechanistic knowledge in the early stages of research and the second to the large number (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • (1 other version)On pain experience, multidisciplinary integration and the level-laden conception of science.Tudor Baetu - 2017 - Synthese:1-20.
    Multidisciplinary models aggregating ‘lower-level’ biological and ‘higher-level’ psychological and social determinants of a phenomenon raise a puzzle. How is the interaction between the physical, the psychological and the social conceptualized and explained? Using biopsychosocial models of pain as an illustration, I argue that these models are in fact level-neutral compilations of empirical findings about correlated and causally relevant factors, and as such they neither assume, nor entail a conceptual or ontological stratification into levels of description, explanation or reality. If inter-level (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • (1 other version)On pain experience, multidisciplinary integration and the level-laden conception of science.Tudor M. Baetu - 2019 - Synthese 196 (8):3231-3250.
    Multidisciplinary models aggregating ‘lower-level’ biological and ‘higher-level’ psychological and social determinants of a phenomenon raise a puzzle. How is the interaction between the physical, the psychological and the social conceptualized and explained? Using biopsychosocial models of pain as an illustration, I argue that these models are in fact level-neutral compilations of empirical findings about correlated and causally relevant factors, and as such they neither assume, nor entail a conceptual or ontological stratification into levels of description, explanation or reality. If inter-level (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • On the Possibility of Crucial Experiments in Biology.Tudor Baetu - 2019 - British Journal for the Philosophy of Science 70 (2):407-429.
    The article analyses in detail the Meselson–Stahl experiment, identifying two novel difficulties for the crucial experiment account, namely, the fragility of the experimental results and the fact that the hypotheses under scrutiny were not mutually exclusive. The crucial experiment account is rejected in favour of an experimental-mechanistic account of the historical significance of the experiment, emphasizing that the experiment generated data about the biochemistry of DNA replication that is independent of the testing of the semi-conservative, conservative, and dispersive hypotheses. _1_ (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • In Defence of an Inferential Account of Extrapolation.Tudor M. Baetu - 2021 - International Studies in the Philosophy of Science 34 (2):81-100.
    According to the hypothesis-generator account, valid extrapolations from a source to a target system are circular, since they rely on knowledge of relevant similarities and differences that can onl...
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Filling in the mechanistic details: two-variable experiments as tests for constitutive relevance. [REVIEW]Tudor M. Baetu - 2012 - European Journal for Philosophy of Science 2 (3):337-353.
    This paper provides an account of the experimental conditions required for establishing whether correlating or causally relevant factors are constitutive components of a mechanism connecting input (start) and output (finish) conditions. I argue that two-variable experiments, where both the initial conditions and a component postulated by the mechanism are simultaneously manipulated on an independent basis, are usually required in order to differentiate between correlating or causally relevant factors and constitutively relevant ones. Based on a typical research project molecular biology, a (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • From interventions to mechanistic explanations.Tudor M. Baetu - 2016 - Synthese 193 (10).
    An important strategy in the discovery of biological mechanisms involves the piecing together of experimental results from interventions. However, if mechanisms are investigated by means of ideal interventions, as defined by James Woodward and others, then the kind of information revealed is insufficient to discriminate between modular and non-modular causal contributions. Ideal interventions suffice for constructing webs of causal dependencies that can be used to make some predictions about experimental outcomes, but tell us little about how causally relevant factors are (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Chance, Experimental Reproducibility, and Mechanistic Regularity.Tudor M. Baetu - 2013 - International Studies in the Philosophy of Science 27 (3):253-271.
    Examples from the sciences showing that mechanisms do not always succeed in producing the phenomena for which they are responsible have led some authors to conclude that the regularity requirement can be eliminated from characterizations of mechanisms. In this article, I challenge this conclusion and argue that a minimal form of regularity is inextricably embedded in examples of elucidated mechanisms that have been shown to be causally responsible for phenomena. Examples of mechanistic explanations from the sciences involve mechanisms that have (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Epistemic values of quantity and variety of evidence in biological mechanism research.Yin Chung Au - 2021 - European Journal for Philosophy of Science 11 (2):1-22.
    This paper proposes an extended version of the interventionist account for causal inference in the practical context of biological mechanism research. This paper studies the details of biological mechanism researchers’ practices of assessing the evidential legitimacy of experimental data, arguing why quantity and variety are two important criteria for this assessment. Because of the nature of biological mechanism research, the epistemic values of these two criteria result from the independence both between the causation of data generation and the causation in (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)Reducing the dauer larva: molecular models of biological phenomena in Caenorhabditis elegans research.Michal Arciszewski - 2013 - Synthese 190 (18):4155-4179.
    One important aspect of biological explanation is detailed causal modeling of particular phenomena in limited experimental background conditions. Recognising this allows one to appreciate that a sufficient condition for a reduction in biology is a molecular model of (1) only the demonstrated causal parameters of a biological model and (2) only within a replicable experimental background. These identities—which are ubiquitous in biology and form the basis of ruthless reductions (Bickle, Philosophy and neuroscience: a ruthlessly reductive account, 2003)—are criticised as merely (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • What is Interpretability?Adrian Erasmus, Tyler D. P. Brunet & Eyal Fisher - 2021 - Philosophy and Technology 34:833–862.
    We argue that artificial networks are explainable and offer a novel theory of interpretability. Two sets of conceptual questions are prominent in theoretical engagements with artificial neural networks, especially in the context of medical artificial intelligence: Are networks explainable, and if so, what does it mean to explain the output of a network? And what does it mean for a network to be interpretable? We argue that accounts of “explanation” tailored specifically to neural networks have ineffectively reinvented the wheel. In (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Toward Mechanism 2.1: A Dynamic Causal Approach.Wei Fang - 2021 - Philosophy of Science 88 (5):796-809.
    I propose a dynamic causal approach to characterizing the notion of a mechanism. Levy and Bechtel, among others, have pointed out several critical limitations of the new mechanical philosophy, and pointed in a new direction to extend this philosophy. Nevertheless, they have not fully fleshed out what that extended philosophy would look like. Based on a closer look at neuroscientific practice, I propose that a mechanism is a dynamic causal system that involves various components interacting, typically nonlinearly, with one another (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Mechanistic and Normative Structure of Agency.Jason Winning - 2019 - Dissertation, University of California San Diego
    I develop an interdisciplinary framework for understanding the nature of agents and agency that is compatible with recent developments in the metaphysics of science and that also does justice to the mechanistic and normative characteristics of agents and agency as they are understood in moral philosophy, social psychology, neuroscience, robotics, and economics. The framework I develop is internal perspectivalist. That is to say, it counts agents as real in a perspective-dependent way, but not in a way that depends on an (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • “Looking Up” and “Looking Down”: On the Dual Character of Mechanistic Explanations.Kari L. Theurer - 2018 - Journal for General Philosophy of Science / Zeitschrift für Allgemeine Wissenschaftstheorie 49 (3):371-392.
    Mechanistic explanation is at present the received view of scientific explanation. One of its central features is the idea that mechanistic explanations are both “downward looking” and “upward looking”: they explain by offering information about the internal constitution of the mechanism as well as the larger environment in which the mechanism is situated. That is, they offer both constitutive and contextual explanatory information. Adequate mechanistic explanations, on this view, accommodate the full range of explanatory factors both “above” and “below” the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Mind as Neural Software? Understanding Functionalism, Computationalism, and Computational Functionalism.Gualtiero Piccinini - 2010 - Philosophy and Phenomenological Research 81 (2):269-311.
    Defending or attacking either functionalism or computationalism requires clarity on what they amount to and what evidence counts for or against them. My goal here is not to evaluate their plausibility. My goal is to formulate them and their relationship clearly enough that we can determine which type of evidence is relevant to them. I aim to dispel some sources of confusion that surround functionalism and computationalism, recruit recent philosophical work on mechanisms and computation to shed light on them, and (...)
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • What was Hodgkin and Huxley’s Achievement?Arnon Levy - 2013 - British Journal for the Philosophy of Science 65 (3):469-492.
    The Hodgkin–Huxley (HH) model of the action potential is a theoretical pillar of modern neurobiology. In a number of recent publications, Carl Craver ([2006], [2007], [2008]) has argued that the model is explanatorily deficient because it does not reveal enough about underlying molecular mechanisms. I offer an alternative picture of the HH model, according to which it deliberately abstracts from molecular specifics. By doing so, the model explains whole-cell behaviour as the product of a mass of underlying low-level events. The (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • (1 other version)Bayesian Cognitive Science, Unification, and Explanation.Stephan Hartmann & Matteo Colombo - 2017 - British Journal for the Philosophy of Science 68 (2).
    It is often claimed that the greatest value of the Bayesian framework in cognitive science consists in its unifying power. Several Bayesian cognitive scientists assume that unification is obviously linked to explanatory power. But this link is not obvious, as unification in science is a heterogeneous notion, which may have little to do with explanation. While a crucial feature of most adequate explanations in cognitive science is that they reveal aspects of the causal mechanism that produces the phenomenon to be (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Complexity-based Theories of Emergence: Criticisms and Constraints.Kari L. Theurer - 2014 - International Studies in the Philosophy of Science 28 (3):277-301.
    In recent years, many philosophers of science have attempted to articulate a theory of non-epistemic emergence that is compatible with mechanistic explanation and incompatible with reductionism. The 2005 account of Fred C. Boogerd et al. has been particularly influential. They argued that a systemic property was emergent if it could not be predicted from the behaviour of less complex systems. Here, I argue that Boogerd et al.'s attempt to ground emergence in complexity guarantees that we will see emergence, but at (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Natural Kindness.Matthew H. Slater - 2015 - British Journal for the Philosophy of Science 66 (2):375-411.
    Philosophers have long been interested in a series of interrelated questions about natural kinds. What are they? What role do they play in science and metaphysics? How do they contribute to our epistemic projects? What categories count as natural kinds? And so on. Owing, perhaps, to different starting points and emphases, we now have at hand a variety of conceptions of natural kinds—some apparently better suited than others to accommodate a particular sort of inquiry. Even if coherent, this situation isn’t (...)
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • Biological Explanation.Angela Potochnik - 2013 - In Kostas Kampourakis (ed.), The Philosophy of Biology: a Companion for Educators. Dordrecht: Springer. pp. 49-65.
    One of the central aims of science is explanation: scientists seek to uncover why things happen the way they do. This chapter addresses what kinds of explanations are formulated in biology, how explanatory aims influence other features of the field of biology, and the implications of all of this for biology education. Philosophical treatments of scientific explanation have been both complicated and enriched by attention to explanatory strategies in biology. Most basically, whereas traditional philosophy of science based explanation on derivation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cell Types as Natural Kinds.Matthew H. Slater - 2013 - Biological Theory 7 (2):170-179.
    Talk of different types of cells is commonplace in the biological sciences. We know a great deal, for example, about human muscle cells by studying the same type of cells in mice. Information about cell type is apparently largely projectible across species boundaries. But what defines cell type? Do cells come pre-packaged into different natural kinds? Philosophical attention to these questions has been extremely limited [see e.g., Wilson (Species: New Interdisciplinary Essays, pp 187–207, 1999; Genes and the Agents of Life, (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Seventeenth-Century Mechanism: An Alternative Framework for Reductionism.Kari L. Theurer - 2013 - Philosophy of Science 80 (5):907-918.
    The current antireductionist consensus rests in part on the indefensibility of the deductive-nomological model of explanation, on which classical reductionism depends. I argue that the DN model is inessential to the reductionist program and that mechanism provides a better framework for thinking about reductionism. This runs counter to the contemporary mechanists’ claim that mechanism is an alternative to reductionism. I demonstrate that mechanists are committed to reductionism, as evidenced by the historical roots of the contemporary mechanist program. This view shares (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Three kinds of new mechanism.Arnon Levy - 2013 - Biology and Philosophy 28 (1):99-114.
    I distinguish three theses associated with the new mechanistic philosophy – concerning causation, explanation and scientific methodology. Advocates of each thesis are identified and relationships among them are outlined. I then look at some recent work on natural selection and mechanisms. There, attention to different kinds of New Mechanism significantly affects of what is at stake.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • What is a mechanism? Thinking about mechanisms across the sciences.Phyllis Illari & Jon Williamson - 2012 - European Journal for Philosophy of Science 2 (1):119-135.
    After a decade of intense debate about mechanisms, there is still no consensus characterization. In this paper we argue for a characterization that applies widely to mechanisms across the sciences. We examine and defend our disagreements with the major current contenders for characterizations of mechanisms. Ultimately, we indicate that the major contenders can all sign up to our characterization.
    Download  
     
    Export citation  
     
    Bookmark   191 citations  
  • Edmund Vincent Cowdry and the Making of Gerontology as a Multidisciplinary Scientific Field in the United States.Hyung Wook Park - 2008 - Journal of the History of Biology 41 (3):529 - 572.
    The Canadian-American biologist Edmund Vincent Cowdry played an important role in the birth and development of the science of aging, gerontology. In particular, he contributed to the growth of gerontology as a multidisciplinary scientific field in the United States during the 1930s and 1940s. With the support of the Josiah Macy, Jr. Foundation, he organized the first scientific conference on aging at Woods Hole, Massachusetts, where scientists from various fields gathered to discuss aging as a scientific research topic. He also (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations