Switch to: References

Add citations

You must login to add citations.
  1. (1 other version)The Ups and Downs of Mechanism Realism: Functions, Levels, and Crosscutting Hierarchies.Joe Dewhurst & Alistair M. C. Isaac - 2021 - Erkenntnis 88 (3):1035-1057.
    Mechanism realists assert the existence of mechanisms as objective structures in the world, but their exact metaphysical commitments are unclear. We introduce Local Hierarchy Realism (LHR) as a substantive and plausible form of mechanism realism. The limits of LHR reveal a deep tension between two aspects of mechanists’ explanatory strategy. Functional decomposition identifies locally relevant entities and activities, while these same entities and activities are also embedded in a nested hierarchy of levels. In principle, a functional decomposition may identify entities (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Autonomous Systems and the Place of Biology Among Sciences. Perspectives for an Epistemology of Complex Systems.Leonardo Bich - 2021 - In Gianfranco Minati (ed.), Multiplicity and Interdisciplinarity. Essays in Honor of Eliano Pessa. Springer. pp. 41-57.
    This paper discusses the epistemic status of biology from the standpoint of the systemic approach to living systems based on the notion of biological autonomy. This approach aims to provide an understanding of the distinctive character of biological systems and this paper analyses its theoretical and epistemological dimensions. The paper argues that, considered from this perspective, biological systems are examples of emergent phenomena, that the biological domain exhibits special features with respect to other domains, and that biology as a discipline (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)The Ups and Downs of Mechanism Realism: Functions, Levels, and Crosscutting Hierarchies.Joe Dewhurst & Alistair M. C. Isaac - 2021 - Erkenntnis 88 (3):1-23.
    Mechanism realists assert the existence of mechanisms as objective structures in the world, but their exact metaphysical commitments are unclear. We introduce Local Hierarchy Realism (LHR) as a substantive and plausible form of mechanism realism. The limits of LHR reveal a deep tension between two aspects of mechanists’ explanatory strategy. Functional decomposition identifies locally relevant entities and activities, while these same entities and activities are also embedded in a nested hierarchy of levels. In principle, a functional decomposition may identify entities (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • What is Interpretability?Adrian Erasmus, Tyler D. P. Brunet & Eyal Fisher - 2021 - Philosophy and Technology 34:833–862.
    We argue that artificial networks are explainable and offer a novel theory of interpretability. Two sets of conceptual questions are prominent in theoretical engagements with artificial neural networks, especially in the context of medical artificial intelligence: Are networks explainable, and if so, what does it mean to explain the output of a network? And what does it mean for a network to be interpretable? We argue that accounts of “explanation” tailored specifically to neural networks have ineffectively reinvented the wheel. In (...)
    Download  
     
    Export citation  
     
    Bookmark   17 citations  
  • Toward Mechanism 2.1: A Dynamic Causal Approach.Wei Fang - 2021 - Philosophy of Science 88 (5):796-809.
    I propose a dynamic causal approach to characterizing the notion of a mechanism. Levy and Bechtel, among others, have pointed out several critical limitations of the new mechanical philosophy, and pointed in a new direction to extend this philosophy. Nevertheless, they have not fully fleshed out what that extended philosophy would look like. Based on a closer look at neuroscientific practice, I propose that a mechanism is a dynamic causal system that involves various components interacting, typically nonlinearly, with one another (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • The Multiplicity of Explanation in Cognitive Science.Raoul Gervais - 2020 - Foundations of Science 26 (4):1089–1104.
    In this paper, I argue that explaining cognitive behavior can be achieved through what I call hybrid explanatory inferences: inferences that posit mechanisms, but also draw on observed regularities. Moreover, these inferences can be used to achieve unification, in the sense developed by Allen Newel in his work on cognitive architectures. Thus, it seems that explanatory pluralism and unification do not rule out each other in cognitive science, but rather that the former represents a way to achieve the latter.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (1 other version)On pain experience, multidisciplinary integration and the level-laden conception of science.Tudor M. Baetu - 2019 - Synthese 196 (8):3231-3250.
    Multidisciplinary models aggregating ‘lower-level’ biological and ‘higher-level’ psychological and social determinants of a phenomenon raise a puzzle. How is the interaction between the physical, the psychological and the social conceptualized and explained? Using biopsychosocial models of pain as an illustration, I argue that these models are in fact level-neutral compilations of empirical findings about correlated and causally relevant factors, and as such they neither assume, nor entail a conceptual or ontological stratification into levels of description, explanation or reality. If inter-level (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • The Structure and Function of Experimental Control in the Life Sciences.Jutta Schickore - 2019 - Philosophy of Science 86 (2):203-218.
    This article presents a new framework for the analysis of experimental control. The framework highlights different functions for experimental controls in the realization of an experiment: experimental controls that serve as tests and experimental controls that serve as probes. The approach to experimental control proposed here can illuminate the constitutive role of controls in knowledge production, and it sheds new light on the notion of exploratory experimentation. It also clarifies what can and what cannot be expected from reviewers of scientific (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • The Time of Data: Timescales of Data Use in the Life Sciences.Sabina Leonelli - 2018 - Philosophy of Science 85 (5):741-754.
    This article considers the temporal dimension of data processing and use and the ways in which it affects the production and interpretation of knowledge claims. I start by distinguishing the time at which data collection, dissemination, and analysis occur from the time in which the phenomena for which data serve as evidence operate. Building on the analysis of two examples of data reuse from modeling and experimental practices in biology, I then argue that Dt affects how researchers select and interpret (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)How to Fix Kind Membership: A Problem for HPC Theory and a Solution.Thomas A. C. Reydon - 2009 - Philosophy of Science 76 (5):724-736.
    Natural kinds are often contrasted with other kinds of scientific kinds, especially functional kinds, because of a presumed categorical difference in explanatory value: supposedly, natural kinds can ground explanations, while other kinds of kinds cannot. I argue against this view of natural kinds by examining a particular type of explanation—mechanistic explanation—and showing that functional kinds do the same work there as traditionally recognized natural kinds are supposed to do in “standard” scientific explanations. Breaking down this categorical distinction between traditional natural (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • On the Possibility of Crucial Experiments in Biology.Tudor Baetu - 2019 - British Journal for the Philosophy of Science 70 (2):407-429.
    The article analyses in detail the Meselson–Stahl experiment, identifying two novel difficulties for the crucial experiment account, namely, the fragility of the experimental results and the fact that the hypotheses under scrutiny were not mutually exclusive. The crucial experiment account is rejected in favour of an experimental-mechanistic account of the historical significance of the experiment, emphasizing that the experiment generated data about the biochemistry of DNA replication that is independent of the testing of the semi-conservative, conservative, and dispersive hypotheses. _1_ (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Reliability and Validity of Experiment in the Neurobiology of Learning and Memory.Sullivan Jacqueline Anne - 2007 - Dissertation, University of Pittsburgh
    Download  
     
    Export citation  
     
    Bookmark  
  • Introduction: Points of Contact between Biology and History.Marie I. Kaiser & Daniel Plenge - 2014 - In Marie I. Kaiser, Oliver R. Scholz, Daniel Plenge & Andreas Hüttemann (eds.), Explanation in the special science: The case of biology and history. Dordrecht: Springer. pp. 1-23.
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Thirty years of Biology & Philosophy: philosophy of which biology?Thomas Pradeu - 2017 - Biology and Philosophy 32 (2):149-167.
    Which domains of biology do philosophers of biology primarily study? The fact that philosophy of biology has been dominated by an interest for evolutionary biology is widely admitted, but it has not been strictly demonstrated. Here I analyse the topics of all the papers published in Biology & Philosophy, just as the journal celebrates its thirtieth anniversary. I then compare the distribution of biological topics in Biology & Philosophy with that of the scientific journal Proceedings of the National Academy of (...)
    Download  
     
    Export citation  
     
    Bookmark   12 citations  
  • Organisms or biological individuals? Combining physiological and evolutionary individuality.Thomas Pradeu - 2016 - Biology and Philosophy 31 (6):797-817.
    The definition of biological individuality is one of the most discussed topics in philosophy of biology, but current debate has focused almost exclusively on evolution-based accounts. Moreover, several participants in this debate consider the notions of a biological individual and an organism as equivalent. In this paper, I show that the debates would be considerably enriched and clarified if philosophers took into account two elements. First, physiological fields are crucial for the understanding of biological individuality. Second, the category of biological (...)
    Download  
     
    Export citation  
     
    Bookmark   47 citations  
  • The many faces of biological individuality.Thomas Pradeu - 2016 - Biology and Philosophy 31 (6):761-773.
    Biological individuality is a major topic of discussion in biology and philosophy of biology. Recently, several objections have been raised against traditional accounts of biological individuality, including the objections of monism, theory-centrism, ahistoricity, disciplinary isolationism, and the multiplication of conceptual uncertainties. In this introduction, I will examine the current philosophical landscape about biological individuality, and show how the contributions gathered in this special issue address these five objections. Overall, the aim of this issue is to offer a more diverse, unifying, (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • What was Hodgkin and Huxley’s Achievement?Arnon Levy - 2013 - British Journal for the Philosophy of Science 65 (3):469-492.
    The Hodgkin–Huxley (HH) model of the action potential is a theoretical pillar of modern neurobiology. In a number of recent publications, Carl Craver ([2006], [2007], [2008]) has argued that the model is explanatorily deficient because it does not reveal enough about underlying molecular mechanisms. I offer an alternative picture of the HH model, according to which it deliberately abstracts from molecular specifics. By doing so, the model explains whole-cell behaviour as the product of a mass of underlying low-level events. The (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Explicating Top-­‐Down Causation Using Networks and Dynamics.William Bechtel - 2017 - Philosophy of Science 84 (2):253-274.
    In many fields in the life sciences investigators refer to downward or top-down causal effects. Craver and Bechtel defended the view that such cases should be understood in terms of a constitution relation between levels in a mechanism and causation as solely an intra-level relation. Craver and Bechtel, however, provided insufficient specification as to when entities constitute a higher-level mechanism. In this paper I appeal to graph-theoretic representations of networks that are now widely employed in systems biology and neuroscience to (...)
    Download  
     
    Export citation  
     
    Bookmark   32 citations  
  • The Metaphysics of Constitutive Mechanistic Phenomena.Marie I. Kaiser & Beate Krickel - 2017 - British Journal for the Philosophy of Science 68 (3).
    The central aim of this article is to specify the ontological nature of constitutive mechanistic phenomena. After identifying three criteria of adequacy that any plausible approach to constitutive mechanistic phenomena must satisfy, we present four different suggestions, found in the mechanistic literature, of what mechanistic phenomena might be. We argue that none of these suggestions meets the criteria of adequacy. According to our analysis, constitutive mechanistic phenomena are best understood as what we will call ‘object-involving occurrents’. Furthermore, on the basis (...)
    Download  
     
    Export citation  
     
    Bookmark   48 citations  
  • Unificatory Explanation.Marco J. Nathan - 2017 - British Journal for the Philosophy of Science 68 (1).
    Philosophers have traditionally addressed the issue of scientific unification in terms of theoretical reduction. Reductive models, however, cannot explain the occurrence of unification in areas of science where successful reductions are hard to find. The goal of this essay is to analyse a concrete example of integration in biology—the developmental synthesis—and to generalize it into a model of scientific unification, according to which two fields are in the process of being unified when they become explanatorily relevant to each other. I (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • (1 other version)Bayesian Cognitive Science, Unification, and Explanation.Stephan Hartmann & Matteo Colombo - 2017 - British Journal for the Philosophy of Science 68 (2).
    It is often claimed that the greatest value of the Bayesian framework in cognitive science consists in its unifying power. Several Bayesian cognitive scientists assume that unification is obviously linked to explanatory power. But this link is not obvious, as unification in science is a heterogeneous notion, which may have little to do with explanation. While a crucial feature of most adequate explanations in cognitive science is that they reveal aspects of the causal mechanism that produces the phenomenon to be (...)
    Download  
     
    Export citation  
     
    Bookmark   44 citations  
  • Natural Kindness.Matthew H. Slater - 2015 - British Journal for the Philosophy of Science 66 (2):375-411.
    Philosophers have long been interested in a series of interrelated questions about natural kinds. What are they? What role do they play in science and metaphysics? How do they contribute to our epistemic projects? What categories count as natural kinds? And so on. Owing, perhaps, to different starting points and emphases, we now have at hand a variety of conceptions of natural kinds—some apparently better suited than others to accommodate a particular sort of inquiry. Even if coherent, this situation isn’t (...)
    Download  
     
    Export citation  
     
    Bookmark   118 citations  
  • Biological Explanation.Angela Potochnik - 2013 - In Kostas Kampourakis (ed.), The Philosophy of Biology: a Companion for Educators. Dordrecht: Springer. pp. 49-65.
    One of the central aims of science is explanation: scientists seek to uncover why things happen the way they do. This chapter addresses what kinds of explanations are formulated in biology, how explanatory aims influence other features of the field of biology, and the implications of all of this for biology education. Philosophical treatments of scientific explanation have been both complicated and enriched by attention to explanatory strategies in biology. Most basically, whereas traditional philosophy of science based explanation on derivation (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Cancer, Conflict, and the Development of Nuclear Transplantation Techniques.Nathan Crowe - 2014 - Journal of the History of Biology 47 (1):63-105.
    The technique of nuclear transplantation – popularly known as cloning – has been integrated into several different histories of twentieth century biology. Historians and science scholars have situated nuclear transplantation within narratives of scientific practice, biotechnology, bioethics, biomedicine, and changing views of life. However, nuclear transplantation has never been the focus of analysis. In this article, I examine the development of nuclear transplantation techniques, focusing on the people, motivations, and institutions associated with the first successful nuclear transfer in metazoans in (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Cell Types as Natural Kinds.Matthew H. Slater - 2013 - Biological Theory 7 (2):170-179.
    Talk of different types of cells is commonplace in the biological sciences. We know a great deal, for example, about human muscle cells by studying the same type of cells in mice. Information about cell type is apparently largely projectible across species boundaries. But what defines cell type? Do cells come pre-packaged into different natural kinds? Philosophical attention to these questions has been extremely limited [see e.g., Wilson (Species: New Interdisciplinary Essays, pp 187–207, 1999; Genes and the Agents of Life, (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Seventeenth-Century Mechanism: An Alternative Framework for Reductionism.Kari L. Theurer - 2013 - Philosophy of Science 80 (5):907-918.
    The current antireductionist consensus rests in part on the indefensibility of the deductive-nomological model of explanation, on which classical reductionism depends. I argue that the DN model is inessential to the reductionist program and that mechanism provides a better framework for thinking about reductionism. This runs counter to the contemporary mechanists’ claim that mechanism is an alternative to reductionism. I demonstrate that mechanists are committed to reductionism, as evidenced by the historical roots of the contemporary mechanist program. This view shares (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Mechanistic Explanations and Models in Molecular Systems Biology.Fred C. Boogerd, Frank J. Bruggeman & Robert C. Richardson - 2013 - Foundations of Science 18 (4):725-744.
    Mechanistic models in molecular systems biology are generally mathematical models of the action of networks of biochemical reactions, involving metabolism, signal transduction, and/or gene expression. They can be either simulated numerically or analyzed analytically. Systems biology integrates quantitative molecular data acquisition with mathematical models to design new experiments, discriminate between alternative mechanisms and explain the molecular basis of cellular properties. At the heart of this approach are mechanistic models of molecular networks. We focus on the articulation and development of mechanistic (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Causal inference, mechanisms, and the Semmelweis case.Raphael Scholl - 2013 - Studies in History and Philosophy of Science Part A 44 (1):66-76.
    Semmelweis’s discovery of the cause of puerperal fever around the middle of the 19th century counts among the paradigm cases of scientific discovery. For several decades, philosophers of science have used the episode to illustrate, appraise and compare views of proper scientific methodology.Here I argue that the episode can be profitably reexamined in light of two cognate notions: causal reasoning and mechanisms. Semmelweis used several causal reasoning strategies both to support his own and to reject competing hypotheses. However, these strategies (...)
    Download  
     
    Export citation  
     
    Bookmark   19 citations  
  • Three kinds of new mechanism.Arnon Levy - 2013 - Biology and Philosophy 28 (1):99-114.
    I distinguish three theses associated with the new mechanistic philosophy – concerning causation, explanation and scientific methodology. Advocates of each thesis are identified and relationships among them are outlined. I then look at some recent work on natural selection and mechanisms. There, attention to different kinds of New Mechanism significantly affects of what is at stake.
    Download  
     
    Export citation  
     
    Bookmark   39 citations  
  • Reassessing Discovery: Rosalind Franklin, Scientific Visualization, and the Structure of DNA.Michelle G. Gibbons - 2012 - Philosophy of Science 79 (1):63-80.
    Philosophers have traditionally conceived of discovery in terms of internal cognitive acts. Close consideration of Rosalind Franklin's role in the discovery of the DNA double helix, however, reveals some problems with this traditional conception. This article argues that defining discovery in terms of mental operations entails problematic conclusions and excludes acts that should fall within the domain of discovery. It proposes that discovery be expanded to include external acts of making visible. Doing so allows for a reevaluation of Franklin's role (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Filling in the mechanistic details: two-variable experiments as tests for constitutive relevance. [REVIEW]Tudor M. Baetu - 2012 - European Journal for Philosophy of Science 2 (3):337-353.
    This paper provides an account of the experimental conditions required for establishing whether correlating or causally relevant factors are constitutive components of a mechanism connecting input (start) and output (finish) conditions. I argue that two-variable experiments, where both the initial conditions and a component postulated by the mechanism are simultaneously manipulated on an independent basis, are usually required in order to differentiate between correlating or causally relevant factors and constitutively relevant ones. Based on a typical research project molecular biology, a (...)
    Download  
     
    Export citation  
     
    Bookmark   14 citations  
  • What is a mechanism? Thinking about mechanisms across the sciences.Phyllis Illari & Jon Williamson - 2012 - European Journal for Philosophy of Science 2 (1):119-135.
    After a decade of intense debate about mechanisms, there is still no consensus characterization. In this paper we argue for a characterization that applies widely to mechanisms across the sciences. We examine and defend our disagreements with the major current contenders for characterizations of mechanisms. Ultimately, we indicate that the major contenders can all sign up to our characterization.
    Download  
     
    Export citation  
     
    Bookmark   191 citations  
  • Edmund Vincent Cowdry and the Making of Gerontology as a Multidisciplinary Scientific Field in the United States.Hyung Wook Park - 2008 - Journal of the History of Biology 41 (3):529 - 572.
    The Canadian-American biologist Edmund Vincent Cowdry played an important role in the birth and development of the science of aging, gerontology. In particular, he contributed to the growth of gerontology as a multidisciplinary scientific field in the United States during the 1930s and 1940s. With the support of the Josiah Macy, Jr. Foundation, he organized the first scientific conference on aging at Woods Hole, Massachusetts, where scientists from various fields gathered to discuss aging as a scientific research topic. He also (...)
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • Explanation in Biology: Reduction, Pluralism, and Explanatory Aims.Ingo Brigandt - 2011 - Science & Education 22 (1):69-91.
    This essay analyzes and develops recent views about explanation in biology. Philosophers of biology have parted with the received deductive-nomological model of scientific explanation primarily by attempting to capture actual biological theorizing and practice. This includes an endorsement of different kinds of explanation (e.g., mathematical and causal-mechanistic), a joint study of discovery and explanation, and an abandonment of models of theory reduction in favor of accounts of explanatory reduction. Of particular current interest are philosophical accounts of complex explanations that appeal (...)
    Download  
     
    Export citation  
     
    Bookmark   45 citations  
  • Evolution, Creation, and the Philosophy of Science.Paul Thagard - unknown
    Debates about evolution and creation inevitably raise philosophical issues about the nature of scientific knowledge. What is a theory? What is an explanation? How is science different from non- science? How should theories be evaluated? Does science achieve truth? The aim of this chapter is to give a concise and accessible introduction to the philosophy of science, focusing on questions relevant to understanding evolution by natural selection, creation, and intelligent design. For the questions just listed, I state what I think (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • New Forms of Complementarity in Science.Andrea Bonaccorsi - 2010 - Minerva 48 (4):355-387.
    New sciences born or developed in the 20th century (information, materials, life science) are based on forms of complementarity that differ from the past. The paper discusses cognitive, or disciplinary, institutional, and technical complementarity. It argues that new sciences apply a reductionist explanatory strategy to complex multi-layered systems. In doing so the reductionist promise is falsified, generating the need for multi-level kinds of explanation (e.g. in post-genomic molecular biology), new forms of complementarity between scientific and non-scientific organizations, and new forms (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Philosophy 
of 
the 
Cognitive 
Sciences.William Bechtel & Mitchell Herschbach - 2010-01-04 - In Fritz Allhoff (ed.), Philosophies of the Sciences. Wiley‐Blackwell. pp. 239--261.
    Cognitive science is an interdisciplinary research endeavor focusing on human cognitive phenomena such as memory, language use, and reasoning. It emerged in the second half of the 20th century and is charting new directions at the beginning of the 21st century. This chapter begins by identifying the disciplines that contribute to cognitive science and reviewing the history of the interdisciplinary engagements that characterize it. The second section examines the role that mechanistic explanation plays in cognitive science, while the third focuses (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • The cell: locus or object of inquiry?William Bechtel - 2010 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 41 (3):172-182.
    Research in many fields of biology has been extremely successful in decomposing biological mechanisms to discover their parts and operations. It often remains a significant challenge for scientists to recompose these mechanisms to understand how they function as wholes and interact with the environments around them. This is true of the eukaryotic cell. Although initially identified in nineteenth-century cell theory as the fundamental unit of organisms, researchers soon learned how to decompose it into its organelles and chemical constituents and have (...)
    Download  
     
    Export citation  
     
    Bookmark   10 citations  
  • (1 other version)Surfaces of action: cells and membranes in electrochemistry and the life sciences.Mathias Grote - 2010 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 41 (3):183-193.
    The term ‘cell’, in addition to designating fundamental units of life, has also been applied since the nineteenth century to technical apparatuses such as fuel and galvanic cells. This paper shows that such technologies, based on the electrical effects of chemical reactions taking place in containers, had a far-reaching impact on the concept of the biological cell. My argument revolves around the controversy over oxidative phosphorylation in bioenergetics between 1961 and 1977. In this scientific conflict, a two-level mingling of technological (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • Function and organization: comparing the mechanisms of protein synthesis and natural selection.Phyllis McKay Illari & Jon Williamson - 2010 - Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 41 (3):279-291.
    In this paper, we compare the mechanisms of protein synthesis and natural selection. We identify three core elements of mechanistic explanation: functional individuation, hierarchical nestedness or decomposition, and organization. These are now well understood elements of mechanistic explanation in fields such as protein synthesis, and widely accepted in the mechanisms literature. But Skipper and Millstein have argued that natural selection is neither decomposable nor organized. This would mean that much of the current mechanisms literature does not apply to the mechanism (...)
    Download  
     
    Export citation  
     
    Bookmark   37 citations  
  • Ecological explanation between manipulation and mechanism description.Viorel Pâslaru - 2009 - Philosophy of Science 76 (5):821-837.
    James Woodward offers a conception of explanation and mechanism in terms of interventionist counterfactuals. Based on a case from ecology, I show that ecologists’ approach to that case satisfies Woodward’s conditions for explanation and mechanism, but his conception does not fully capture what ecologists view as explanatory. The new mechanistic philosophy likewise aims to describe central aspects of mechanisms, but I show that it is not sufficient to account for ecological mechanisms. I argue that in ecology explanation involves identification of (...)
    Download  
     
    Export citation  
     
    Bookmark   7 citations  
  • Schaffner’s Model of Theory Reduction: Critique and Reconstruction.Rasmus Gr⊘Nfeldt Winther - 2009 - Philosophy of Science 76 (2):119-142.
    Schaffner’s model of theory reduction has played an important role in philosophy of science and philosophy of biology. Here, the model is found to be problematic because of an internal tension. Indeed, standard antireductionist external criticisms concerning reduction functions and laws in biology do not provide a full picture of the limits of Schaffner’s model. However, despite the internal tension, his model usefully highlights the importance of regulative ideals associated with the search for derivational, and embedding, deductive relations among mathematical (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Some virtues of modeling with both hands.William Bechtel - unknown
    Webb distinguishes two endeavors she calls animal modeling and animat modeling and advocates for the former. I share her preference and point to additional virtues of modeling actual biological mechanisms (animal modeling). As Webb argues, animat modeling should be regarded as modeling of specific, but madeup, biological mechanisms. I contend that modeling made-up mechanisms in situations in which we have some knowledge of the actual mechanisms involved is modeling with one hand—the good one—tied behind one’s back.1 The hand that is (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Dynamic mechanistic explanation: computational modeling of circadian rhythms as an exemplar for cognitive science.William Bechtel & Adele Abrahamsen - 2010 - Studies in History and Philosophy of Science Part A 41 (3):321-333.
    Two widely accepted assumptions within cognitive science are that (1) the goal is to understand the mechanisms responsible for cognitive performances and (2) computational modeling is a major tool for understanding these mechanisms. The particular approaches to computational modeling adopted in cognitive science, moreover, have significantly affected the way in which cognitive mechanisms are understood. Unable to employ some of the more common methods for conducting research on mechanisms, cognitive scientists’ guiding ideas about mechanism have developed in conjunction with their (...)
    Download  
     
    Export citation  
     
    Bookmark   119 citations  
  • Generalization and discovery by assuming conserved mechanisms: Cross‐species research on circadian oscillators.William Bechtel - 2009 - Philosophy of Science 76 (5):762-773.
    In many domains of biology, explanation takes the form of characterizing the mechanism responsible for a particular phenomenon in a specific biological system. How are such explanations generalized? One important strategy assumes conservation of mechanisms through evolutionary descent. But conservation is seldom complete. In the case discussed, the central mechanism for circadian rhythms in animals was first identified in Drosophila and then extended to mammals. Scientists' working assumption that the clock mechanisms would be conserved both yielded important generalizations and served (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations  
  • Beyond reduction and pluralism: Toward an epistemology of explanatory integration in biology.Ingo Brigandt - 2010 - Erkenntnis 73 (3):295-311.
    The paper works towards an account of explanatory integration in biology, using as a case study explanations of the evolutionary origin of novelties-a problem requiring the integration of several biological fields and approaches. In contrast to the idea that fields studying lower level phenomena are always more fundamental in explanations, I argue that the particular combination of disciplines and theoretical approaches needed to address a complex biological problem and which among them is explanatorily more fundamental varies with the problem pursued. (...)
    Download  
     
    Export citation  
     
    Bookmark   94 citations  
  • (1 other version)Constitutive Explanatory Relevance.Carl Craver - 2007 - Journal of Philosophical Research 32:3-20.
    In what sense are the activities and properties of components in a mechanism explanatorily relevant to the behavior of a mechanism as a whole? I articulate this problem, the problem of constitutive relevance, and I show that it must be solved if we are to understand mechanisms and mechanistic explanation. I argue against some putative solutions to the problem of constitutive relevance, and I sketch a positive account according to which relevance is analyzed in terms ofrelationships of mutual manipulability between (...)
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Mechanisms in cognitive psychology: What are the operations?William Bechtel - 2008 - Philosophy of Science 75 (5):983-994.
    Cognitive psychologists, like biologists, frequently describe mechanisms when explaining phenomena. Unlike biologists, who can often trace material transformations to identify operations, psychologists face a more daunting task in identifying operations that transform information. Behavior provides little guidance as to the nature of the operations involved. While not itself revealing the operations, identification of brain areas involved in psychological mechanisms can help constrain attempts to characterize the operations. In current memory research, evidence that the same brain areas are involved in what (...)
    Download  
     
    Export citation  
     
    Bookmark   28 citations  
  • Molecules, systems, and behavior: Another view of memory consolidation.William Bechtel - 2009 - In John Bickle (ed.), The Oxford handbook of philosophy and neuroscience. New York: Oxford University Press.
    From its genesis in the 1960s, the focus of inquiry in neuroscience has been on the cellular and molecular processes underlying neural activity. In this pursuit neuroscience has been enormously successful. Like any successful scientific inquiry, initial successes have raised new questions that inspire ongoing research. While there is still much that is not known about the molecular processes in brains, a great deal of very important knowledge has been secured, especially in the last 50 years. It has also attracted (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • (1 other version)Mechanisms and psychological explanation.Cory Wright & William Bechtel - 2006 - In Paul Thagard (ed.), Handbook of the Philosophy of Psychology and Cognitive Science. Elsevier.
    As much as assumptions about mechanisms and mechanistic explanation have deeply affected psychology, they have received disproportionately little analysis in philosophy. After a historical survey of the influences of mechanistic approaches to explanation of psychological phenomena, we specify the nature of mechanisms and mechanistic explanation. Contrary to some treatments of mechanistic explanation, we maintain that explanation is an epistemic activity that involves representing and reasoning about mechanisms. We discuss the manner in which mechanistic approaches serve to bridge levels rather than (...)
    Download  
     
    Export citation  
     
    Bookmark   34 citations