Switch to: Citations

Add references

You must login to add references.
  1. Lower Bounds to the size of constant-depth propositional proofs.Jan Krajíček - 1994 - Journal of Symbolic Logic 59 (1):73-86.
    LK is a natural modification of Gentzen sequent calculus for propositional logic with connectives ¬ and $\bigwedge, \bigvee$. Then for every d ≥ 0 and n ≥ 2, there is a set Td n of depth d sequents of total size O which are refutable in LK by depth d + 1 proof of size exp) but such that every depth d refutation must have the size at least exp). The sets Td n express a weaker form of the pigeonhole (...)
    Download  
     
    Export citation  
     
    Bookmark   22 citations  
  • (1 other version)Quantified propositional calculi and fragments of bounded arithmetic.Jan Krajíček & Pavel Pudlák - 1990 - Zeitschrift fur mathematische Logik und Grundlagen der Mathematik 36 (1):29-46.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Interpolation theorems, lower Bounds for proof systems, and independence results for bounded arithmetic.Jan Krajíček - 1997 - Journal of Symbolic Logic 62 (2):457-486.
    A proof of the (propositional) Craig interpolation theorem for cut-free sequent calculus yields that a sequent with a cut-free proof (or with a proof with cut-formulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuit-size is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which allows a similar estimate for a larger class of proofs. We derive from it several corollaries: (1) Feasible (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • An exponential separation between the parity principle and the pigeonhole principle.Paul Beame & Toniann Pitassi - 1996 - Annals of Pure and Applied Logic 80 (3):195-228.
    The combinatorial parity principle states that there is no perfect matching on an odd number of vertices. This principle generalizes the pigeonhole principle, which states that for a fixed bipartition of the vertices, there is no perfect matching between them. Therefore, it follows from recent lower bounds for the pigeonhole principle that the parity principle requires exponential-size bounded-depth Frege proofs. Ajtai previously showed that the parity principle does not have polynomial-size bounded-depth Frege proofs even with the pigeonhole principle as an (...)
    Download  
     
    Export citation  
     
    Bookmark   9 citations  
  • (1 other version)Quantified propositional calculi and fragments of bounded arithmetic.Jan Krajíček & Pavel Pudlák - 1990 - Mathematical Logic Quarterly 36 (1):29-46.
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • Separation results for the size of constant-depth propositional proofs.Arnold Beckmann & Samuel R. Buss - 2005 - Annals of Pure and Applied Logic 136 (1-2):30-55.
    This paper proves exponential separations between depth d-LK and depth -LK for every utilizing the order induction principle. As a consequence, we obtain an exponential separation between depth d-LK and depth -LK for . We investigate the relationship between the sequence-size, tree-size and height of depth d-LK-derivations for , and describe transformations between them. We define a general method to lift principles requiring exponential tree-size -LK-refutations for to principles requiring exponential sequence-size d-LK-refutations, which will be described for the Ramsey principle (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations