Switch to: References

Add citations

You must login to add citations.
  1. (2 other versions)x1. Introduction. The classical propositional calculus has an undeserved reputation among logicians as being essentially trivial. I hope to convince the reader that it presents some of the most challenging and intriguing problems in modern logic. Although the problem of the complexity of propositional proofs is very. [REVIEW]Alasdair Urquhart - 1995 - Bulletin of Symbolic Logic 1 (4):425-467.
    §1. Introduction. The classical propositional calculus has an undeserved reputation among logicians as being essentially trivial. I hope to convince the reader that it presents some of the most challenging and intriguing problems in modern logic. Although the problem of the complexity of propositional proofs is very natural, it has been investigated systematically only since the late 1960s. Interest in the problem arose from two fields connected with computers, automated theorem proving and computational complexity theory. The earliest paper in the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Bounded arithmetic and the polynomial hierarchy.Jan Krajíček, Pavel Pudlák & Gaisi Takeuti - 1991 - Annals of Pure and Applied Logic 52 (1-2):143-153.
    T i 2 = S i +1 2 implies ∑ p i +1 ⊆ Δ p i +1 ⧸poly. S 2 and IΔ 0 ƒ are not finitely axiomatizable. The main tool is a Herbrand-type witnessing theorem for ∃∀∃ П b i -formulas provable in T i 2 where the witnessing functions are □ p i +1.
    Download  
     
    Export citation  
     
    Bookmark   46 citations  
  • Quantified propositional calculus and a second-order theory for NC1.Stephen Cook & Tsuyoshi Morioka - 2005 - Archive for Mathematical Logic 44 (6):711-749.
    Let H be a proof system for quantified propositional calculus (QPC). We define the Σqj-witnessing problem for H to be: given a prenex Σqj-formula A, an H-proof of A, and a truth assignment to the free variables in A, find a witness for the outermost existential quantifiers in A. We point out that the Σq1-witnessing problems for the systems G*1and G1 are complete for polynomial time and PLS (polynomial local search), respectively. We introduce and study the systems G*0 and G0, (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • Higher complexity search problems for bounded arithmetic and a formalized no-gap theorem.Neil Thapen - 2011 - Archive for Mathematical Logic 50 (7):665-680.
    We give a new characterization of the strict $$\forall {\Sigma^b_j}$$ sentences provable using $${\Sigma^b_k}$$ induction, for 1 ≤ j ≤ k. As a small application we show that, in a certain sense, Buss’s witnessing theorem for strict $${\Sigma^b_k}$$ formulas already holds over the relatively weak theory PV. We exhibit a combinatorial principle with the property that a lower bound for it in constant-depth Frege would imply that the narrow CNFs with short depth j Frege refutations form a strict hierarchy with (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • Interpolation theorems, lower Bounds for proof systems, and independence results for bounded arithmetic.Jan Krajíček - 1997 - Journal of Symbolic Logic 62 (2):457-486.
    A proof of the (propositional) Craig interpolation theorem for cut-free sequent calculus yields that a sequent with a cut-free proof (or with a proof with cut-formulas of restricted form; in particular, with only analytic cuts) with k inferences has an interpolant whose circuit-size is at most k. We give a new proof of the interpolation theorem based on a communication complexity approach which allows a similar estimate for a larger class of proofs. We derive from it several corollaries: (1) Feasible (...)
    Download  
     
    Export citation  
     
    Bookmark   24 citations  
  • (2 other versions)reputation among logicians as being essentially trivial. I hope to convince the reader that it presents some of the most challenging and intriguing problems in modern logic. Although the problem of the complexity of propositional proofs is very natural, it has been investigated systematically only since the late 1960s. [REVIEW]Alasdair Urquhart - 1995 - Bulletin of Symbolic Logic 1 (4):425-467.
    §1. Introduction. The classical propositional calculus has an undeserved reputation among logicians as being essentially trivial. I hope to convince the reader that it presents some of the most challenging and intriguing problems in modern logic. Although the problem of the complexity of propositional proofs is very natural, it has been investigated systematically only since the late 1960s. Interest in the problem arose from two fields connected with computers, automated theorem proving and computational complexity theory. The earliest paper in the (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Simulating non-prenex cuts in quantified propositional calculus.Emil Jeřábek & Phuong Nguyen - 2011 - Mathematical Logic Quarterly 57 (5):524-532.
    We show that the quantified propositional proof systems Gi are polynomially equivalent to their restricted versions that require all cut formulas to be prenex Σqi . Previously this was known only for the treelike systems G*i. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • (2 other versions)The complexity of propositional proofs.Alasdair Urquhart - 1995 - Bulletin of Symbolic Logic 1 (4):425-467.
    Propositional proof complexity is the study of the sizes of propositional proofs, and more generally, the resources necessary to certify propositional tautologies. Questions about proof sizes have connections with computational complexity, theories of arithmetic, and satisfiability algorithms. This is article includes a broad survey of the field, and a technical exposition of some recently developed techniques for proving lower bounds on proof sizes.
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On transformations of constant depth propositional proofs.Arnold Beckmann & Sam Buss - 2019 - Annals of Pure and Applied Logic 170 (10):1176-1187.
    This paper studies the complexity of constant depth propositional proofs in the cedent and sequent calculus. We discuss the relationships between the size of tree-like proofs, the size of dag-like proofs, and the heights of proofs. The main result is to correct a proof construction in an earlier paper about transformations from proofs with polylogarithmic height and constantly many formulas per cedent.
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • On the correspondence between arithmetic theories and propositional proof systems – a survey.Olaf Beyersdorff - 2009 - Mathematical Logic Quarterly 55 (2):116-137.
    The purpose of this paper is to survey the correspondence between bounded arithmetic and propositional proof systems. In addition, it also contains some new results which have appeared as an extended abstract in the proceedings of the conference TAMC 2008 [11].Bounded arithmetic is closely related to propositional proof systems; this relation has found many fruitful applications. The aim of this paper is to explain and develop the general correspondence between propositional proof systems and arithmetic theories, as introduced by Krajíček and (...)
    Download  
     
    Export citation  
     
    Bookmark   2 citations  
  • Witnessing functions in bounded arithmetic and search problems.Mario Chiari & Jan Krajíček - 1998 - Journal of Symbolic Logic 63 (3):1095-1115.
    We investigate the possibility to characterize (multi) functions that are Σ b i -definable with small i (i = 1, 2, 3) in fragments of bounded arithmetic T 2 in terms of natural search problems defined over polynomial-time structures. We obtain the following results: (1) A reformulation of known characterizations of (multi)functions that are Σ b 1 - and Σ b 2 -definable in the theories S 1 2 and T 1 2 . (2) New characterizations of (multi)functions that are (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Fragments of bounded arithmetic and the lengths of proofs.Pavel Pudl'ak - 2008 - Journal of Symbolic Logic 73 (4):1389-1406.
    We consider the problem whether the $\forall \Sigma _{1}^{b}$ theorems of the fragments $T_{2}^{a}$ form a strictly increasing hierarchy. We shall show a link to some results about the lengths of proofs in predicate logic that supports the conjecture that the hierarchy is strictly increasing.
    Download  
     
    Export citation  
     
    Bookmark   5 citations  
  • (1 other version)Tautologies from pseudo-random generators.Jan Krajíček - 2001 - Bulletin of Symbolic Logic 7 (2):197-212.
    We consider tautologies formed form a pseudo-random number generator, defined in Krajicek [11] and in Alekhnovich et al. [2]. We explain a strategy of proving their hardness for Extended Frege systems via a conjecture about bounded arithmetic formulated in Krajicek [11]. Further we give a purely finitary statement, in the form of a hardness condition imposed on a function, equivalent to the conjecture. This is accompanied by a brief explanation, aimed at non-specialists, of the relation between prepositional proof complexity and (...)
    Download  
     
    Export citation  
     
    Bookmark   6 citations  
  • On the finite axiomatizability of.Chris Pollett - 2018 - Mathematical Logic Quarterly 64 (1-2):6-24.
    The question of whether the bounded arithmetic theories and are equal is closely connected to the complexity question of whether is equal to. In this paper, we examine the still open question of whether the prenex version of,, is equal to. We give new dependent choice‐based axiomatizations of the ‐consequences of and. Our dependent choice axiomatizations give new normal forms for the ‐consequences of and. We use these axiomatizations to give an alternative proof of the finite axiomatizability of and to (...)
    Download  
     
    Export citation  
     
    Bookmark  
  • (1 other version)Tautologies From Pseudo-random Generators, By, Pages 197 -- 212.Jan Krajíček - 2001 - Bulletin of Symbolic Logic 7 (2):197-212.
    We consider tautologies formed from a pseudo-random number generator, defined in Krajíček [11] and in Alekhnovich et al. [2]. We explain a strategy of proving their hardness for Extended Frege systems via a conjecture about bounded arithmetic formulated in Krajíček [11]. Further we give a purely finitary statement, in the form of a hardness condition imposed on a function, equivalent to the conjecture.
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Separation results for the size of constant-depth propositional proofs.Arnold Beckmann & Samuel R. Buss - 2005 - Annals of Pure and Applied Logic 136 (1-2):30-55.
    This paper proves exponential separations between depth d-LK and depth -LK for every utilizing the order induction principle. As a consequence, we obtain an exponential separation between depth d-LK and depth -LK for . We investigate the relationship between the sequence-size, tree-size and height of depth d-LK-derivations for , and describe transformations between them. We define a general method to lift principles requiring exponential tree-size -LK-refutations for to principles requiring exponential sequence-size d-LK-refutations, which will be described for the Ramsey principle (...)
    Download  
     
    Export citation  
     
    Bookmark   4 citations  
  • Polynomial local search in the polynomial hierarchy and witnessing in fragments of bounded arithmetic.Arnold Beckmann & Samuel R. Buss - 2009 - Journal of Mathematical Logic 9 (1):103-138.
    The complexity class of [Formula: see text]-polynomial local search problems is introduced and is used to give new witnessing theorems for fragments of bounded arithmetic. For 1 ≤ i ≤ k + 1, the [Formula: see text]-definable functions of [Formula: see text] are characterized in terms of [Formula: see text]-PLS problems. These [Formula: see text]-PLS problems can be defined in a weak base theory such as [Formula: see text], and proved to be total in [Formula: see text]. Furthermore, the [Formula: (...)
    Download  
     
    Export citation  
     
    Bookmark   8 citations  
  • Dual weak pigeonhole principle, Boolean complexity, and derandomization.Emil Jeřábek - 2004 - Annals of Pure and Applied Logic 129 (1-3):1-37.
    We study the extension 123) of the theory S21 by instances of the dual weak pigeonhole principle for p-time functions, dWPHPx2x. We propose a natural framework for formalization of randomized algorithms in bounded arithmetic, and use it to provide a strengthening of Wilkie's witnessing theorem for S21+dWPHP. We construct a propositional proof system WF , which captures the Π1b-consequences of S21+dWPHP. We also show that WF p-simulates the Unstructured Extended Nullstellensatz proof system of Buss et al. 256). We prove that (...)
    Download  
     
    Export citation  
     
    Bookmark   16 citations  
  • Preservation theorems and restricted consistency statements in bounded arithmetic.Arnold Beckmann - 2004 - Annals of Pure and Applied Logic 126 (1-3):255-280.
    We define and study a new restricted consistency notion RCon ∗ for bounded arithmetic theories T 2 j . It is the strongest ∀ Π 1 b -statement over S 2 1 provable in T 2 j , similar to Con in Krajíček and Pudlák, 29) or RCon in Krajı́ček and Takeuti 107). The advantage of our notion over the others is that RCon ∗ can directly be used to construct models of T 2 j . We apply this by (...)
    Download  
     
    Export citation  
     
    Bookmark   1 citation  
  • Implicit Proofs.Jan Krajíček - 2004 - Journal of Symbolic Logic 69 (2):387 - 397.
    We describe a general method how to construct from a propositional proof system P a possibly much stronger proof system iP. The system iP operates with exponentially long P-proofs described "implicitly" by polynomial size circuits. As an example we prove that proof system iEF, implicit EF, corresponds to bounded arithmetic theory $V_{2}^{1}$ and hence, in particular, polynomially simulates the quantified propositional calculus G and the $\pi_{1}^{b}-consequences$ of $S_{2}^{1}$ proved with one use of exponentiation. Furthermore, the soundness of iEF is not (...)
    Download  
     
    Export citation  
     
    Bookmark   3 citations  
  • Examining fragments of the quantified propositional calculus.Steven Perron - 2008 - Journal of Symbolic Logic 73 (3):1051-1080.
    When restricted to proving $\Sigma _{i}^{q}$ formulas, the quantified propositional proof system $G_{i}^{\ast}$ is closely related to the $\Sigma _{i}^{b}$ theorems of Buss's theory $S_{2}^{i}$ . Namely, $G_{i}^{\ast}$ has polynomial-size proofs of the translations of theorems of $S_{2}^{i}$ , and $S_{2}^{i}$ proves that $G_{i}^{\ast}$ is sound. However, little is known about $G_{i}^{\ast}$ when proving more complex formulas. In this paper, we prove a witnessing theorem for $G_{i}^{\ast}$ similar in style to the KPT witnessing theorem for $T_{2}^{i}$ . This witnessing theorem (...)
    Download  
     
    Export citation  
     
    Bookmark